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+ Transparency
+ Flexibility

+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability
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Motivation

Industrial impact

Within SIEMENS, constraint technologies have been successfully
used for solving configuration problems for more than 25 years.
[...] approximately 80 percent of the maintenance costs and more
than 60 percent of the development costs for the knowledge rep-
resentation and reasoning tasks were saved.

In: A. Falkner et al. Twenty-Five Years of Successful Application of Constraint Technologies at Siemens. Al Magazine.
37(4):67-80, 2016.
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Nutshell

Answer Set Programming (ASP)

m What is ASP?
ASP is an approach for declarative problem solving
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Nutshell

Answer Set Programming (ASP)

m What is ASP?
ASP is an approach for declarative problem solving
m Where is ASP from?
m Databases
m Logic programming
m Knowledge representation and reasoning
m Satisfiability solving
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Nutshell

Answer Set Programming (ASP)

m What is ASP? ASP = DB+LP+KR-+SAT!
ASP is an approach for declarative problem solving
m Where is ASP from?
m Databases
m Logic programming
m Knowledge representation and reasoning
m Satisfiability solving
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m What is ASP?
ASP is an approach for declarative problem solving

m What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems
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Nutshell

Answer Set Programming (ASP)

m What is ASP?

ASP is an approach for declarative problem solving
m What is ASP good for?

Solving knowledge-intense combinatorial (optimization) problems
m What problems are this?

Problems consisting of (many) decisions and constraints

Examples Sudoku, Configuration, Diagnosis, Music composition,
Planning, System design, Time tabling, etc.
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Nutshell

Answer Set Programming (ASP)

m What is ASP?
ASP is an approach for declarative problem solving

m What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

m What problems are this? — And industrial ones ?

Debian, Ubuntu: Linux package configuration
Exeura: Call routing

FCC: Radio frequency auction

Gioia Tauro: Workforce management

NASA: Decision support for Space Shuttle
SBB: Train disposition

Siemens: Partner units configuration
Variantum: Product configuration
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Nutshell

Answer Set Programming (ASP)

m What is ASP?
ASP is an approach for declarative problem solving

m What is ASP good for?

Solving knowledge-intense combinatorial (optimization) problems
m What problems are this?

Problems consisting of (many) decisions and constraints
m What are ASP’s distinguishing features?

m High level, versatile modeling language
m High performance solvers
m Qualitative and quantitative optimization
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Nutshell

Answer Set Programming (ASP)

m What is ASP?
ASP is an approach for declarative problem solving
m What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems
m What problems are this?
Problems consisting of (many) decisions and constraints
m What are ASP’s distinguishing features?
m High level, versatile modeling language
m High performance solvers
m Qualitative and quantitative optimization
m Any industrial impact?

m ASP Tech companies: DLV Systems and Potassco Solutions
m Increasing interest in (large) companies
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Evolution

Some (biased) moments in time

m '80 Capturing incomplete information
m '90 Amalgamation and computation
m '00 Applications and semantic rediscoveries

m '10 Customization and integration
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Evolution

Some (biased) moments in time

m '80 Capturing incomplete information

m Databases Closed world assumption
m Logic programming Negation as failure
m Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

m '90 Amalgamation and computation
m '00 Applications and semantic rediscoveries

m '10 Customization and integration

[ 1 ]=)
(& Potassco
Torsten Schaub (KRRQUP) Knowledge-driven Al 10 /45



Evolution

Some (biased) moments in time

m '80 Capturing incomplete information

m '90 Amalgamation and computation

m Logic programming semantics
Well-founded and stable models semantics
m ASP solving
“Stable models = Well-founded semantics + Branch”

m '00 Applications and semantic rediscoveries

m '10 Customization and integration
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Evolution

Some (biased) moments in time

m '80 Capturing incomplete information
m '90 Amalgamation and computation

m '00 Applications and semantic rediscoveries

m Growing dissemination — see last slides —
m Constructive logics Equilibrium Logic

m '10 Customization and integration
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Evolution

Some (biased) moments in time

m '80 Capturing incomplete information
m '90 Amalgamation and computation
m '00 Applications and semantic rediscoveries

m '10 Customization and integration

m Complex reasoning modes APls, multi-shot solving
m Hybridization Constraint ASP, theory solving
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Evolution

Some (biased) moments in time

m '80 Capturing incomplete information

m '90 Amalgamation and computation

m '00 Applications and semantic rediscoveries
m '10 Customization and integration

'20 Real-world industries
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Evolution

Some (biased) moments in time

m '80 Capturing incomplete information

m '90 Amalgamation and computation

m '00 Applications and semantic rediscoveries
m '10 Customization and integration

'20 Real-world industries

m Industrial applications
m Software engineering
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Foundation

Logic programs
m A logic program, P, over a set A of atoms is a finite set of rules
m A rule is of the form
ap :- aig,...,ap, not aptq,..., not a,.

where 0 < m < n and each a; € Ais an atom for 0 </ <n
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Foundation

Logic programs
m A logic program, P, over a set A of atoms is a finite set of rules

m A rule is of the form

ag :- aig,...,ap, not aptq,..., not an.
~—~
head body

where 0 < m < nand each a; € Aisan atomfor 0 </ <n
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Logic programs
m A logic program, P, over a set A of atoms is a finite set of rules
m A rule is of the form
ap :- aig,...,ap, not aptq,..., not a,.

where 0 < m < n and each a; € Ais an atom for 0 </ <n

m Semantics given by stable models, informally,
models of P justifying each true atom by a proof
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Foundation

Logic programs
m A logic program, P, over a set A of atoms is a finite set of rules
m A rule is of the form
ap :- aig,...,ap, not aptq,..., not a,.

where 0 < m < n and each a; € Ais an atom for 0 </ <n

m Semantics given by stable models, informally,
models of P justifying each true atom by a proof

Minimal models in the logic HT (Heyting'30) / G3 (Godel'32)
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Foundation

Open and Closed world reasoning

m Open world reasoning

m if a statement is true, it remains true
m if a statement is false, it remains false
m if a statement is unknown, it is either true or false
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Foundation

Open and Closed world reasoning

m Open world reasoning
m if a statement is true, it remains true
m if a statement is false, it remains false
m if a statement is unknown, it is either true or false
is monotonic
m Closed world reasoning

m if a statement is true, it remains true
m if a statement is false, it remains false
m if a statement is unknown, it becomes false

iS non-monotonic
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Foundation

Open and Closed world reasoning

Open world reasoning

m if a statement is true, it remains true

m if a statement is false, it remains false

m if a statement is unknown, it is either true or false
is monotonic
Closed world reasoning

m if a statement is true, it remains true
m if a statement is false, it remains false
m if a statement is unknown, it becomes false

iS non-monotonic

offers defaults, reachability, succinctness

ASP offers both open and closed world reasoning
by using stable model semantics
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Foundation

Open and Closed world reasoning

by example

m Alphabet {a, b}
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Foundation

Open and Closed world reasoning

by example

m Alphabet {a, b}
m The fact
L
has the
= models {a}, {a, b}
= minimal models {a}

m stable models  {a}
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Foundation

Open and Closed world reasoning

m Alphabet {a, b}
m The rule
m b—a
has the
= models {a}, {b}, {a, b}
= minimal models {a}, {b}

m stable models  {a}
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Foundation

The logic of Here-and-There (HT)

p =L |alerp | Ve | p—op

A pair (H, T) of sets of atoms with H C T
H is called “here” and
T is called “there”

(H, T) is a simplified Kripke structure

H represents provably true atoms
T represents possibly true atoms
atoms not in T are false

@ is provably true
~ is possibly true (ie, classically true)

mm
ASIRS
2
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H is called “here” and
T is called “there”

(H, T) is a simplified Kripke structure
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Foundation

The logic of Here-and-There (HT)

mFormula o i= L | a | opAp | Vo | o=

m Interpretation A pair (H, T) of sets of atoms with H C T

m H is called “here” and
m 7 is called “there”
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Foundation

The logic of Here-and-There (HT)

mFormula o i= L | a | opAp | Vo | o=

m Interpretation A pair (H, T) of sets of atoms with H C T
m H is called “here” and
m 7 is called “there”

m Note (H, T) is a simplified Kripke structure

m Intuition

m H represents provably true atoms
m T represents possibly true atoms
B atoms not in T are false
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Foundation

The logic of Here-and-There (HT)

Formula ¢ o= L | a | oA@ | oV | p—

Interpretation A pair (H, T) of sets of atoms with H C T

m H is called “here” and
m 7 is called “there”

Note (H, T) is a simplified Kripke structure

Intuition

m H represents provably true atoms
m T represents possibly true atoms
B atoms not in T are false

m ldea
m (H,T)E¢ ~ is provably true
m (T, TYE=¢p ~ ispossibly true (ie, classically true)
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Satisfaction
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Foundation

Satisfaction

m(HT)EFaifaecH for any atom a
m(HT)EpAyif(H,T)=Epand (H,T) =Ev¢
m (H,T)EeVvyif(H, T)Epor (H,T) v

(H, T)

Fe—¢if (X, T) = ¢ implies (X, T) = ¢
for both X = H, T

m An interpretation (H, T) is a model of ¢, if (H, T) E ¢
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Foundation

Tautologies

\ﬂa\a\/ﬂa\ﬁ—'a\—ma\/—'a a<$— ——a

(H[T[a

[T F|] T | T T T
0 [{a}|[F|F| F | T T F
0 [0 ||F|T| T |F T T

(EE\E’Potassco
17 /45

Torsten Schaub (KRRQUP) Knowledge-driven Al



Foundation

Tautologies

\ﬂa\a\/ﬂa\ﬁ—'a\—ma\/ﬂa a<$— ——a

(H[T[a

[T F|] T | T T T
0 [{a}|[F|F| F | T T F
0 [0 ||F|T| T |F T T

(EE\E’Potassco
17 /45

Torsten Schaub (KRRQUP) Knowledge-driven Al



Foundation

Equilibrium models
(Pearce’96)

m A total interpretation (T, T) is an equilibrium model of
a formula ¢, if

(T, TYE¢
(H, T pforal HC T
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Foundation

Equilibrium models
(Pearce'96)

m A total interpretation (T, T) is an equilibrium model of
a formula ¢, if

(T, TYE¢
(H, T pforal HC T

m T is called a stable model of ¢

m Note

m (T, T) acts as a classical model
n (H,T)=Piff HEPT (PT is the reduct of P by T)
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Usage

Modeling, grounding, and solving

Problem Solution
Modeling Interpreting
Logic Stable
Brogram Grounder Solver Models
Solving
(EE\?Potassco
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Usage

Language constructs

m Facts q(42).
m Rules pX) :- q(X), not r(X).
m Conditional literals p - 9X) : r(X).
m Disjunction pX) ; qX) - r(X).
m Integrity constraints - qX), pX).
m Choice 2 {p&X,Y) : qX) } 7 :- r(Y).

m Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

m Multi-objective optimization i~ q(X), pX,0). [C]
#minimize { C : q(X), p(X,C) }
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Usage

The traveling salesperson problem (TSP)

m Problem Instance A set of cities and distances among them,
or simply a weighted graph

m Problem Class What is the shortest possible route visiting
each city once and returning to the city of origin?
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Usage

The traveling salesperson problem (TSP)

m Problem Instance A set of cities and distances among them,
or simply a weighted graph

m Problem Class What is the shortest possible route visiting
each city once and returning to the city of origin?

m Note
m TSP extends the Hamiltonian cycle problem:
Is there a cycle in a graph visiting each node exactly once
m TSP is relevant to applications in logistics, planning, chip design,
and the core of the vehicle routing problem
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Usage

Traveling salesperson

Problem instance, cities.1lp

start (a) .
city(a). city(b). city(c). city(d).

road(a,b,10). road(b,c,20). road(c,d,25). road(d,a,40).
road(b,d,30). road(d,c,25). road(c,a,35).

@Potassco
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Usage

Traveling salesperson
Problem encoding, tsp.1lp

{ travel(X,Y) } :- road(X,Y,_).
visited(Y) :- travel(X,Y), start(X).
visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.
:- city(X), 2 { travel(Y,X) }.
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Usage

Traveling salesperson
Problem encoding, tsp.1lp

{ travel(X,Y) } :- road(X,Y,_).
visited(Y) :- travel(X,Y), start(X).
visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

city(X), 2 { travel(X,Y) }.
city(X), 2 { travel(Y,X) }.

travel (X,Y), road(X,Y,D). [D,X,Y]
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Usage

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading. ..

Solving...

Answer: 1

start(a) [...] road(c,a,35)

travel (a,b) travel(b,d) travel(d,c) travel(c,a)
visited(b) visited(c) visited(d) visited(a)
Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

visited(b) visited(c) visited(d) visited(a)
Optimization:
OPTIMUM FOUND

Models 2
Optimum : yes
Optimization : 95
Calls g 4
Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat:
CPU Time : 0.002s
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travel(a,b) travel(b,d) travel(d,c) travel(c,a)
visited(b) visited(c) visited(d) visited(a)
Optimization: 100
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Usage

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading. ..

Solving...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)
visited(b) visited(c) visited(d) visited(a)
Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)
visited(b) visited(c) visited(d) visited(a)
Optimization: 95

OPTIMUM FOUND

Models g 2
Optimum : yes
Optimization : 95
Calls g i
Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat:
CPU Time : 0.002s
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Usage

Some of our industrial projects

Railway companies
m Shift planning
m Room planning

Maintenance scheduling
Train disposition

m Automobile industries
m Car assembly sequencing = Robotic vehicle control
m Car version configuration

Logistics industries
m Delivery optimization
m Stock optimization

m Manufacturing industries

m Product configuration
m Machine configuration

Assembly line layout

m Public services
m University timetabling
m University study regulations @Potassco
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Visualization
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@ Visualization
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Visualization

Modeling, grounding, and solving

Problem Solution
Modeling Interpreting
Logic Stable
Brogram Grounder Solver Models
Solving
(EE\?Potassco
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Visualization

clingraph

Sudoku
A problem
ASP Developer
"A sudoku puzzle”
(& Potassco
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Visualization

clingraph
Sudoku

initial(1,4,2). initial(3,3,1).
initial(3,4,3). initial(3,1,4).

ASP Developer

(\. Potassco
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Visualization

clingraph

Sudoku?

initial(1,4,2). initial(3,3,1).
initial(3,4,3). initial(3,1,4).

ASP Developer

sudoku(X,Y,V) :- initial(X,Y,V).
{ sudoku(X,Y,V) : val(V) } =1 :- pos(X,Y).
:= sudoku(X,Y,V), sudoku(X’,Y,V), X != X’.
sudoku(X,Y,V), sudoku(X,Y’,V), Y != Y’.
:= sudoku(X,Y,V), sudoku(X’,Y’,V), (X,V)!=(X",Y"),
subgrid(X,Y,S), subgrid(X’,Y’,S).

) P P L
Torsten Schaub (KRRQUP)
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Visualization

clingraph
Sudoku

clingo version 5.7.1
— — Reading from sudoku.lp .
?n?t?al(1,4,2). ?n?t?al(3,3,1). Solving. ..
initial(3,4,3). initial(3,1,4). Answer: 1
sudoku(1,4,2) sudoku(3,3,1)
sudoku(1,2,3) sudoku(3,4,3)
ASP Developer sudoku(X,Y,V) :- initial(X,Y,V). sudoku(3,1,4) sudoku(1,1,1)
{ sudoku(X,Y,V) : val(V) } =1 :- pos(X,Y). sudoku(4,2,1) sudoku(3,2,2)
-~ sudoku(X,Y,V), sudoku(X’,Y,V), X != X’. »| sudoku(4,1,3) sudoku(1,3,4)
:= sudoku(X,Y,V), sudoku(X,Y’,V), Y !=Y’. sudoku(4,3,2) sudoku(4,4,4)
:- sudoku(X,Y,V), sudoku(X’,Y’,V), (X,Y)!=(X’,Y"), sudoku(2,1,2) sudoku(2,4,1)
subgrid(X,Y,S), subgrid(X’,Y’,S). sudoku(2,3,3) sudoku(2,2,4)
SATISFIABLE
Models : 1+
Calls : 1
Time : 0.007s
CPU Time : 0.003s
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Visualization

clingraph

Sudoku

initial(1,4,2). initial(3,3,1).
initial(3,4,3). initial(3,1,4).

Image
ASP Developer sudoku(X,Y,V) :- initial(X,Y,V).
{ sudoku(X,Y,V) : val(V) } = 1 :- pos(X,Y).
:= sudoku(X,Y,V), sudoku(X’,Y,V), X != X’.
sudoku(X,Y,V), sudoku(X,Y’,V), Y != Y’.
:— sudoku(X,Y,V), sudoku(X’,Y’,V), (X,Y)!=(X’,Y’),
subgrid(X,Y,S), subgrid(X’,Y’,S).
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Visualization

clingraph

Sudoku
initial(1,4,2). initial(3,3,1).
initial(3,4,3). initial(3,1,4).
Image
ASP Developer sudoku(X,Y,V) :- initial(X,Y,V).

{ sudoku(X,Y,V) : val(V) } = 1 :- pos(X,Y).
:= sudoku(X,Y,V), sudoku(X’,Y,V), X != X’. =~

sudoku(X,Y,V), sudoku(X,Y’,V), Y != Y’.
:— sudoku(X,Y,V), sudoku(X’,Y’,V), (X,Y)!=(X’,Y’),

subgrid(X,Y,S), subgrid(X’,Y’,S).
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Visualization

clingraph

Sudoku

initial(1,4,2). initial(3,3,1).
initial(3,4,3). initial(3,1,4).

v Image
ASP Developer

sudoku(X,Y,V) :- initial(X,Y,V).
{ sudoku(X,Y,V) : val(V) } = 1 :- pos(X,Y).
:= sudoku(X,Y,V), sudoku(X’,Y,V), X != X’.
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subgrid(X,Y,S), subgrid(X’,Y’,S).
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Visualization

clingraph

Sudoku

initial(1,4,2). initial(3,3,1).
initial(3,4,3). initial(3,1,4).

v Image
ASP Developer

sudoku(X,Y,V) :- initial(X,Y,V).
{ sudoku(X,Y,V) : val(V) } = 1 :- pos(X,Y).
:= sudoku(X,Y,V), sudoku(X’,Y,V), X != X’.
sudoku(X,Y,V), sudoku(X,Y’,V), Y != Y’.
:— sudoku(X,Y,V), sudoku(X’,Y’,V), (X,Y)!=(X’,Y’),
subgrid(X,Y,S), subgrid(X’,Y’,S).

> Visualization encoding
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Visualization

clingraph

Sudoku
initial(1,4,2). initial(3,3,1).
initial(3,4,3). initial(3,1,4).
v Image
ASP Developer sudoku(X,Y,V) :- initial(X,Y,V).
{ sudoku(X,Y,V) : val(V) } = 1 :- pos(X,Y).
:- sudoku(X,Y,V), sudoku(X’,Y,V), X != X’.
sudoku(X,Y,V), sudoku(X,Y’,V), Y != Y’.
:= sudoku(X,Y,V), sudoku(X’,Y’,V), (X,Y)!=(X’,Y’),
subgrid(X,Y,S), subgrid(X’,Y’,S). A
graph/1
5 aan q de/2
» Visualization encoding o
edge/1
attr/4
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Visualization

clingraph

Sudoku

initial(1,4,2). initial(3,3,1).
initial(3,4,3). initial(3,1,4).

v
ASP Developer

sudoku(X,Y,V) :- initial(X,Y,V).
{ sudoku(X,Y,V) : val(V) } = 1 :- pos(X,Y).
:= sudoku(X,Y,V), sudoku(X’,Y,V), X != X’.
sudoku(X,Y,V), sudoku(X,Y’,V), Y != Y’.
:= sudoku(X,Y,V), sudoku(X’,Y’,V), (X,Y)!=(X’,Y’),
subgrid(X,Y,S), subgrid(X’,Y’,S).

graph/1
» Visualization encoding ZZZ:Z
attr/4
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Visualization encoding

Sudoku
m graph/1 m edge/1
m node/2 m attr/4
(EE\EPotassco
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Visualization

Visualization encoding

Sudoku
m graph/1 m edge/1
m node/2 m attr/4

graph (sudoku) .
node(pos(X,Y), sudoku) :- pos(X,Y).

attr(node, pos(X,Y), label, V) :- sudoku(X,Y,V).

attr(node, pos(X,Y), shape, square) :- sudoku(X,Y,V).

attr(node, pos(X,Y), style, filled) :- sudoku(X,Y,V).

attr(node, pos(X,Y), fontsize, 30) :- sudoku(X,Y,V).

attr(node, pos(X,Y), width, “1") :- sudoku(X,Y,V).

attr(node, pos(X,Y), pos, @pos(X,Y)) :- pos(X,Y).

attr(node, pos(X,Y), fillcolor, blue) :- pos(X,Y), (((X-1)/dim)+((Y-1)/dim))\2==0.

attr(node, pos(X,Y), fontcolor, grayb50) :- sudoku(X,Y,V), not initial(X,Y,_).
@E‘:’Potassco
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Visualization

Example
Simple graph

(3 Potassco
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Torsten Schaub (KRR@UP)

#show
#show
#show
#show

Visualization

Example
Simple graph

node/1.

edge((N,M)) : edge(N, M).

attr(node, N, style, filled): node(N).
attr(node, N, color, C) : assign(N, C).

(3 Potassco
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Visualization

Example
Subgraphs

Livingroom

Main light

Torsten Schaub (KRR@UP)

Knowledge-driven Al




Visualization

Example
UML

#ceolor: str
l number: int

Van

‘book(date:date) : bool|

Potassco
Torsten Schaub (KRR@UP) Knowledge-driven Al 33 /45
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Example
SVG
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Visualization

Example
SVG

MINESWEEPER  FIND 10 MINES

(\. Potassco
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Visualization

Example
ETEX
start
Cyellow Cgreen
Cred Cyellow
®
(EE\E Potassco
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Visualization

Example

GIF animation

Potassco
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Visualization

Example

GIF animation

Potassco
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Visualization

clingraph

m An ASP-based front-end to graphviz
m Define visualizations in terms of ASP
m Visualize instances, solutions, or even the solving process
m Extends ASP’s rapid prototyping with visualization

m Functionalities @
m Command line usage gt
m Python API i
m Different output formats e ;
m Integration with clingo

m Open source software

m https://github.com/potassco/clingraph
m https://clingraph.readthedocs.io

[ 1 ]=)
(3 Potassco
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Omissions

Outline

Omissions

am0
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Omissions

More features of interest

Meta programming

Qualitative and quantitative optimization

Heuristic programming

Application interface programming

m Multi-shot solving
m Theory solving

Linear Temporal, Dynamic and Metric reasoning

m Visualization

[ 1 ]=)
(3 Potassco
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Omissions

More features of interest

Meta programming

Qualitative and quantitative optimization

Heuristic programming

Application interface programming

m Multi-shot solving
m Theory solving

Linear Temporal, Dynamic and Metric reasoning

m Visualization

Playful? https://potassco.org
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What else?

Outline

B What else?
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What else?

ASP systems and tools

W gringo grounding
m clasp solving
m clingo ASP
m metasp Meta ASP
m clingcon ASP+CP
m fclingo ASP+CP
m clingo[DL] ASP+CP
m clingo[LP] ASP+CP
m clingo[LPX] ASP+CP
m eclingo epistemic ASP
m plingo probabilistic ASP
m telingo temporal ASP

[ 1 ]=)
(3 Potassco
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What else?

ASP systems and tools

m clinsight editing
m xclingo explaining
m clingo-server surfing
m acclingo tuning
m anthem verifying
m asprin preferring
m clingraph visualizing
m clinguin interacting
B viasp visualizing
m clintest testing
m clorm dataing
- e optimizing £ Potassco

Knowledge-driven Al 41/45
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aspartame
aspcafe
aspcud
asprilo
chasp
flatzingo
fluto
plasp
qasp

spa
teaspoon

Xorro

What else?

Application-oriented systems

constraint solver

vehicle equipment specification
software package configuration
warehouse simulation

music composition

constraint solver

metabolic network expansion
planning system

quantified ASP solver

study planner

university timetabling system

sampling stable models

Knowledge-driven Al
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Recap

Outline

El Recap
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Recap

Take home message
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Recap

Take home message

Modeling 4+ Grounding + Solving

[ 1 ]=)
(& Potassco
Torsten Schaub (KRRQUP) Knowledge-driven Al 44 /45



Take home message

Modeling 4+ Grounding + Solving
ASP = DB+LP+KR+SAT
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Take home message

Modeling 4+ Grounding + Solving
ASP = DB+LP+KR+SMT”"
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Take home message

Modeling 4+ Grounding + Solving
ASP = DB+LP+KR+SMT”"

https://potassco.org
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Take home message

Modeling 4+ Grounding + Solving
ASP = DB+LP+KR+SMT”"

https://potassco.org

And it's fun!
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Recap

Epilogue

After all, it's all about Tweety!
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Recap

Epilogue

After all, it's all about Tweety!

READINGS IN

NONMONOTONIC
REASONING

EDITED BY
MATTHEW L. GINSBERG

_'87
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