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WHAT DO WE MEAN BY ‘LEARNING’?

General qualitative model of (exact) learning:
» on the basis of incoming data consistent with an underlying concept

» learner achieves a desired type of knowledge of the underlying concept.

This perspective in various ways generalises many popular learning topics:
» one step updates with an incoming piece of information:
Belief Revision Theory, Dynamic Epistemic Logic
» particular algorithmic probabilistic methods of automatic improvement:

Machine Learning, Bayesian Learning, Reinforcement Learning

@ Gierasimczuk, N., Inductive Inference and Epistemic Modal Logic. 31st Annual Conference on Computer Science Logic (CSL 2023)
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SUBSET SPACE

DEFINITION
A subset space is (X, O), where O C P(X), X and O (at most) countable.
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LEARNING: STREAMS OF OBSERVATIONS

DEFINITION
Let (X, O) be a subset space.

» A data stream is an infinite sequence 0= (0o, O4,...) from O.

> A data sequence O[n] is a finite initial segment of O of length n + 1.

DEFINITION B
Take (X,0) and s € S. A data stream O is:

» sound with respect to s iff every element listed in O is true in s.
» complete with respect to s iff every observable true in s is listed in 0.

We assume that data streams are sound and complete.



LEARNING: LEARNERS AND CONJECTURES

DEFINITION
Let (X, O) be a subset space and let o be a data sequence.

A learner L is a function that on o outputs a conjecture L(o) C X.

DEFINITION
(X, O) is identified in the limit by L if for every x € X and every data stream
O for x, there is k € N s.t.

L(O[n]) = {x} for all n > k.

(X, O) is identifiable in the limit if it is identified in the limit by a learner L.



QUESTIONS, ANSWERS, AND PROBLEMS

DEFINITION
» A question Q is a partition of X, whose cells A; are called answers to O.
» Given x € AC X, A€ Q is called the answer to Q at x, denoted A,.
> Q' is a refinement of Q if answers of Q are disjoint unions of those of Q.
» A problem is a pair ((X,0), Q), where Q is a question over X.
> ((X,0),Q") is a refinement of ((X,0), Q) if Q' is a refinement of Q.
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SOLVING IN THE LIMIT

DEFINITION
((X,0), Q) is solved in the limit by L if for every x € X and every data
stream O for x, there is k € N s.t.:

L(O[n]) C A, for all n > k.

((X,0), Q) is solvable in the limit if solved in the limit by a learner L.



SOME HISTORICAL CONTEXT

B Hillary Putnam (1965). Trial and error predicates and the solution to...
[4 E. Mark Gold (1967). Language identification in the limit.

@ Ray Solomonoff (1964). A formal theory of inductive inference.



TRIAL AND ERROR PREDICATES

A predicate (set) P is decidable if there is a effective procedure ¢
such that

P(x) iff o(x)=1;
-P(x) iff ¢(x)=0.

What happens if we modify the condition by:
1. allowing ¢ to change her mind any finite number of times;

2. making it impossible to diagnose termination?

P is a trial and error predicate if there is a Turing Machine ¢ such that

P(x) iff 3kVn>k o(x,n) =1,
-P(x) iff 3kVn > k ¢(x,n) =0.

Trial and error predicates are decidable in the limit.
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KLEENE-MOSTOWSKI ARITHMETICAL HIERARCHY

In this context one can think of ¢ as of a learning function,
Especially if more than two answers are possible.

The quantifier prefix in the definition of trial and error predicates

indicates their place in arithmetic hierarchy.

AY A e A Al

We will focus on a more general case,

when learner has to pick from more than two options,
in fact, from countably many options.
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GENERAL TOPOLOGY
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GENERAL TOPOLOGY

DEFINITION
A a subset space (X, Q) is topological if:
1. 0eo,
2. Xe0,
3. forany YCO,JY € O, and
4. for any finite Y C O, we have Y € O.




SEPARABILITY BY OBSERVATIONS: ILLUSTRATION

(A) t and u are not separable

(B) weakly separated space, T0O (c) strongly separated space, T1



LocaLLy CLOSED AND CONSTRUCTIBLE SETS

DEFINITION
A topological space (X, Q) is Ty iff
for every x € X thereis a U € O such that U\ {x} € O.

Ty is a separation property between 70 and T1.

DEFINITION
A set A is locally closed if A= UnN C, where U is open and C is closed.



CHARACTERIZATION OF SOLVABILITY IN THE LIMIT

THEOREM
((X,0), Q) is solvable in the limit iff Q has a locally closed refinement.

COROLLARY
(X, O) is identifiable in the limit iff it is Ty.

@ A. Baltag, N. Gierasimczuk, S. Smets, On the solvability of inductive problems: a study in epistemic topology, TARK 2015.



RELATIONAL SEMANTICS FOR MODAL LOGIC

DEFINITION (SYNTAX)
Let P be a countable set of propositional symbols, p € P.

p=pl-plene|DOp

DEFINITION (SEMANTICS)
Given a model M = (W ,R,v), where RC W x W, v: P — (W), xe W:

M, x=p iff x € v(p) for each p € P

M, x = —p iff not M,x = ¢

M x =AYy iff M,xEpand M,x =9

M, x = 0p iff for all y € W: if xRy then M,y = ¢



SOME AXIOMS AND THEIR EPISTEMIC INTERPRETATION

Rules
(MP) if - ¢ and F ¢ — 1, then - ¢
(N) if = ¢, then O
Axioms
O(p = ¢) = (Op — Ov) (omniscience)
Op — ¢ (truthfullness/reflexivity)

Oy — OO positive introspection /transitivit
4 Y Yy

)
)
(D) Op — -O-¢ (consistency /seriality)
)
) O — O-0¢ (negative introspection/Euclidean-ness)



SOME AXIOMS AND THEIR EPISTEMIC INTERPRETATION

Rules

(MP) if - ¢ and F ¢ — 1, then - ¢

(N) if = ¢, then O
Axioms
) O = ) — (Op — OY)
) Op— o
(D) Op — -0O-¢p
) Op — O0p
) O — O-0¢

(omniscience)
(truthfullness/reflexivity)
(consistency /seriality)

(positive introspection /transitivity)

(negative introspection/Euclidean-ness)

Ax is a logic of a class of models M iff Ax is sound and complete wrt M.



TOPOLOGICAL INTERPRETATIONS
RELATIONAL [J v§s TOPOLOGICAL [ := Int
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TOPOLOGICAL TOPO-SEMANTICS FOR MODAL LoOGIC

DEFINITION (SYNTAX)
Let P be a countable set of propositional symbols, p € P.

pwi=p|op|eAe | Op

DEFINITION
A topological model (or a topo-model) M = (X, O, v) is a topological space
(X, O) together with a valuation function v : P — P(X).

DEFINITION (SEMANTICS)
Given a topological model M = (X, O, v) and a state x € X:

M,x =p iff  x € v(p) for each p € P

M, x |= —¢ iff not M,x = ¢

M xEpAyY iff M,xEg@and M,x =9

M, x = 0Op iff thereis Ue t(x€ Uandforally e U M,y |E ¢)



SOUND AND COMPLETE TOPO-AXIOMATIZATIONS

Rules
(MP) if = and - ¢ — 9, then - ¢
(N) if F ¢, then - Op
Axioms
) D = %) = (Op = Op)
) Op =
(D) Op — -0O-¢p
) Op — O0p
) O — O-0¢
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Rules

(MP) if = and - ¢ — 9, then - ¢
(N) if F ¢, then - Op

Axioms

(K) D(e = ¢) = (Op — Oy)
(T) Op — ¢

(O]
<o®
N
(4) Op — O0O¢

S4 is the topo-logic of all topological spaces (McKinsey & Tarski 1944)




WHAT ABOUT T4-SPACES (IDENTIFIABLE IN THE LIMIT)?

T4 is not topo-definable.

The identifiability-adequate notion of belief is not topo-definable.



WHAT ABOUT T4-SPACES (IDENTIFIABLE IN THE LIMIT)?

T4 is not topo-definable.

The identifiability-adequate notion of belief is not topo-definable

But let us, on a whim, change the way we view [J.



TOPOLOGICAL d-SEMANTICS

DEFINITION (SEMANTICS)
Given a topological model M = (X, O, v) and a state x € X:

M,x =4 p iff  x € v(p)

M, x =4 —p iff not M,x =4 ¢

M,xEqp ANy iff M,xkEqpand M,x =g ¢

M, x =q Op ifft IUer(xelU&VyelU-—{x} M,yl4ep)



SOUND AND COMPLETE d-AXIOMATIZATIONS

Rules
(MP) if - and - ¢ — 9, then ¢
(N) if = ¢, then = Op
Axioms
Ol — ¥) — (Op > )
Op — ¢

A,\r\
~ O 3 X
A AN IR ANE NG

Op — O

Oe — O

O — O-0Op

(¢ AOp) — O0¢
O0O¢ — ¢) — Op
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SOUND AND COMPLETE d-AXIOMATIZATIONS

Rules

(MP) if - ¢ and ¢ — 9, then - ¢
(N) if - ¢, then - Op
Axioms

(K) O(p — ¢) — (Op — Oy)

(D) Op = -O-¢

wKD45=dense
(5) O — O-0O¢p

(w) (¢ AOp) — O0p

wKD45 is the d-logic of dense spaces.




SOUND AND COMPLETE d-AXIOMATIZATIONS

Rules

(MP) if - ¢ and ¢ — 9, then - ¢
(N) if - ¢, then - Op
Axioms
(K) O(e — ¢) — (Op — Oy)
(D) Op — —-0O-¢p
(4) Op — OO
(

KD45=DSO
5) -0 — O-O¢

KD45 is the d-logic of DSO-spaces.




SOUND AND COMPLETE d-AXIOMATIZATIONS

Rules

(MP) if - ¢ and ¢ — 9, then - ¢
(N) if - ¢, then - Op
Axioms

(K) O(p — ¢) — (Op — Oy)

GL=scattered

(GL) O(@¢ — ¢) — Op

GL is the d-logic of scattered spaces.




SOUND AND COMPLETE d-AXIOMATIZATIONS

Rules
(MP) if - ¢ and ¢ — 9, then - ¢
(N) if - ¢, then - Op
Axioms
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wK4=Topo
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SOUND

AND COMPLETE d-AXIOMATIZATIONS

Rules

(MP)
(N)

if - and - o — 1, then - ¥
if =, then - Oy
Axioms

O(p = ¢) = (O = 09)

Oe — Op

K4=T,

Finally, K4 is the d-logic of all T4-spaces!




SOUND AND COMPLETE d-AXIOMATIZATIONS

Rules

(MP) if - ¢ and ¢ — 9, then - ¢
(N) if - ¢, then - Op
Axioms

(K) O(p — ¢) — (Op — Oy)

(4) Op — OO

And so what...?

Finally, K4 is the d-logic of all T4-spaces!




ANOTHER WAY

Get dynamic!

THEOREM
Dynamic Logic of Learning Theory is sound and complete with respect to the
class of learning models.

@ Baltag, A., Gierasimczuk, N., Ozgiin, A., Vargas Sandoval, A.L., and Smets S., A dynamic
logic for learning theory. J. Log. Algebr. Meth. Program. 2019.



OUTLINE

CONSTRUCTIVE, ORDER-DRIVEN LEARNING: BELIEF REVISION
+ truth-tracking under cognitive biases
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ORDER-DRIVEN LEARNING: MOTIVATION

» Belief Revision: minimal states give beliefs.
» Computational Learning Theory: co-learning, learning by erasing.

» Philosophy of Science: Ockham's razor.
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PLAUSIBILITY SPACES

A plausibility space, Bs = (S, O, <), consists of an epistemic space S = (S, O)
and a plausibility preorder < C S x S.

KNOWLEDGE AND BELIEF

BsE=Kp iff SCp
Bs |=Bp iff min<S Cp.

For non-well-founded spaces we generalise to:

Bs |EBp iff IwVu<wué€np.



BELIEF-REVISION METHODS

DEFINITION
A belief-revision method is a function R that, for any plausibility space
Bs = (S, O, <) and any observation O outputs a new plausibility space:

R(Bg, O) = (5/7 Oa j/)

A belief revision R can be iterated in the following way:
R(Bs,o * O) := R(R(Bs, o), O), where ¢ is a finite sequence of observations.



CONDITIONING

» Conditioning eliminates all worlds of S that do not satisfy the observation.

delete




LEXICOGRAPHIC UPGRADE

» Lexicographic upgrade rearranges the preorder by putting all worlds
satisfying the observation to be more plausible than others.






MINIMAL UPGRADE

» Minimal upgrade rearranges the preorder by making only the most
plausible states satisfying the observation more plausible than all others,
leaving the rest of the preorder the same.





LEARNING VIA BELIEF REVISION

DEFINITION

Every belief-revision method R, together with a prior plausibility <
generates in a canonical way a learning method Lg

called a belief-revision-based learning method, and given by:

LA ((S,0),0) := min<R((S, 0, <), 0).

DEFINITION
An epistemic space S is learnable by a belief-revision method R if
there exists a prior plausibility assignment < such that LE learns S.

@ A. Baltag, N. Gierasimczuk, S. Smets. Truth tracking by belief revision. Studia Logica 2018.
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DEFINITION
L is universal if it can learn every epistemic space that is learnable.

‘Conditioning Lexicographic ~ Minimal

Positive Streams ‘ YES YES NO

THEOREM
There is no universal belief-revision method under well-foundedness.




Is =O OBSERVABLE?

An epistemic space S = (S, ) is negation-closed iff if O € O, then O € O.

DEFINITION

Let S = (S, O) be a negation-closed epistemic space. A stream O is fair with
respect to the world s if Ois complete wrt to s, and contains only finitely many
observations O, s.t. s € O and every such error is eventually corrected in 0.



Is =O OBSERVABLE?

An epistemic space S = (S, ) is negation-closed iff if O € O, then O € O.

DEFINITION

Let S = (S, O) be a negation-closed epistemic space. A stream O is fair with
respect to the world s if Ois complete wrt to s, and contains only finitely many
observations O, s.t. s € O and every such error is eventually corrected in 0.

‘Conditioning Lexicographic ~ Minimal

Positive and Negative YES YES NO
Fair Streams NO YES NO




TYPES OF BIAS

We combine revision methods with three kinds of ‘cognitive’ limitations:
» issues with accepting the input;
» issues with perceiving the input;
» issues with access to belief state.

We investigate (theoretically and practically) their impact on truth-tracking.



SIMULATION EXPERIMENTS

The procedure

After the random generation of an epistemic space, one of the states, s, is
randomly designated to be the actual world, and a sound and complete data
sequence o for s is generated. Then a plausibility preorder is randomly
generated and each of the (biased) revision methods is called to identify s on o.

The simulation

Each series of tests consisted of 200 runs, the plausibility spaces consisted of 5
possible worlds and 12 observables, and the incoming data sequence was always
longer than the number of observables.



ISSUES WITH ACCEPTING THE INPUT (CONFIRMATION BIAS)

DEFINITION
Given an (S, O), the stubbornness function is D : P(S) — N.

DEFINITION
Rcg is defined in the following way:

Res(B, \) = B,

_ RI(RCB(B70)7p) if #P(U) > D(ﬁ)7
Ree(B,o-p) = {RCB(B,U) otherwise.

We obtain Condcg, Lexcg, Minicg.



REsSuLTS

ProposITION
Cond, Lex, Mini are strictly more powerful than Condcg, Lexcg, Minicg.

COROLLARY
Condcg and Lexcg are not universal.

100,0%

80,0%

75,0%
60,0% 68,0%
56,5%
40,0%
20,0%
0,0% I

Cond Lex Mini

@Regular @CB
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ISSUES WITH PERCEIVING THE INPUT (FRAMING BIAS)

DEFINITION
Given (S, O), the framing function is FR : O — P(S).

DEFINITION (FRAMING-BIAS METHODS)
We define a framing-biased method in the following way:

Rer(B, \) = B,

RFR(B,O' . p) = I‘?l(:"?lr:R(B,(7),X)7 such that x € FR(p)

We obtain Condrr, Lexrr, Minirg.



REsSuLTS

PROPOSITION
Condgr and Lexpr are not universal.

PROPOSITION
Mini is strictly more powerful than Minirg.

PROPOSITION

Lexgr is universal on fairly framed streams.

100,0%

97,5% 97,0%
80,0%
60,0%

40,0%

20,0%

77,5%



ISSUES WITH ACCESS TO BELIEF STATE (ANCHORING BIAS)

DEFINITION (ANCHORING-BIAS METHODS)

We define a anchoring-biased method in the following way: after receiving p
they ‘choose’ the best world satisfying p. If there are minimal several worlds
that are equi-plausible, the method picks one at random.

Additionally, a resource parameter (a real number between 0 and 100) halves
each time a revision takes place, and the process terminates when the resource
is depleted (< 1).



REsSuLTS

PROPOSITION
Condag, Lexag are not universal.

100,0% 60,0%
98,5%
94,5% 0o
80,0% o h 50,5%
78,5% R | 5%
200 43,0%
60,0 395% 20,0% 40,5%
2006 36,0%
200 2
200
20,0% 1005
00 00
cond Lex Mini Cond Lex Mini
BRegular BAB Regular-res [ AB-res

Anchoring ability to select a random world as the candidate for the actual world
improves the truth-tracking capability, especially in the case of minimal revision.
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Recent related work:

Baltag, Bezhanishivili, and Ferndndez-Duque, Topology of Surprise. Proc. 19th KR, 2022

@ Booth and Singleton, Truth-tracking with Non-expert Information Sources. JAIR 2024.
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