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Introduction

® A lattice-theoretic framework for reasoning about concepts, objects, and properties.
® |ts used for data-mining, knowledge discovery, ontologies, etc.

® Concepts are extracted from a data-structure called a formal context, a triple
K = (G, M, 1) of objects G, attributes M, and a relation / C G x M indicating when
an object ‘has’ and attribute
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Chameleon X X X X
Crow X X X X
Ostrich X X X X
Penguin X X X X X
Platypus X X X X X
Snake X X X

Swallow X X X X

Whale X X X

Table: A formal context of animals and some of their properties
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Derivation Operators

Definition (Derivation Operators)

In a formal context (G, M, I) the derivation operators are two maps (-)' : G — M and
(:)¥: M+ G suchthatif X C Gand Y C M
X' ={meM|vVgeX:(g,mel}
Yt ={gecG|VmeY:(g,m)el}
® The derivation operators (T, ) allow us to move from sets of objects to attributes,
and vice verse

e Given some set of objects X, its derivation is the set of attributes which are common
to all objects in X
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Concepts

® A concept in a formal context is defined by its extension, and intension
e |t is a pair (X,Y) of sets X C G and Y C M such that

® Y consists of the attributes which all objects in X share
® X consists of those objects which have all attributes in Y

Definition (Formal Concept)

In a formal context (G, M, I) a concept is an object-attribute pair (X, Y) such that
XT'=Yand Yt =X.

® Two concepts C; = (X1, Y1) and G, = (X3, Y2) can be ordered such that G < G
iff. Xy € Xo iff. Yo C Y;:. Then ( is a subconcept of C,.

® This is a partial order, which corresponds to a complete lattice we call the concept
lattice.
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Concept Lattices

® \We can represent the data in a
context as a concept lattice

® Each node represents a concept

® Concepts inherit attributes from
above, and contain objects from
below
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Implications |

Derivation operators also enable us to find correspondence between (sets of) attributes

1. K Ebird — oviparous

2. K = {aquatic, terrestrial} — oviparous

3. K}~ bird — aerial
Why?

1. All objects that are birds are
oviparous,
birdt - oviparousi

2. oviparous C
{aquatic, terrestriall}’

3. penguin is a bird but not
aerial

K

Crow
Ostrich
Penguin

4 Platypus
Snake
Swallow
Whale

X X X X
X X X X X X

Table: Slightly reduced context
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Implications |l

® But implications which do not hold in a context might still represent useful
information

® \We might be dealing with error-prone data, or want to tolerate exceptions

e Existing work tackles this problem through use of association rules (with support,
confidence)

® But these metrics are unintuitive to settle on, and difficult to explain

® \We look for an approach which has a clearer pattern of reasoning, i.e., the KLM
framework

8/23



KLM Framework

e Kraus, Lehmann, and Magidor (KLM) argue that a logic for non-monotonic should
be able to express something like birds usually fly (even though some may not)

bif

® Expressed as a consequence relation satisfying certain properties (so called
Rationality Postulates)

1. Reflexivity: —*— % 2 LLE: _A=%¢ ~y
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Semantics

® The semantics for a statement like rest on the idea of ordering valuations V
by preference (typicality)!

bfp
/N
bpf bfp

_

bpf

® Any minimal v € ¥V where birds is true, v IF f
® So, also p |~ —f

!boldface indicates false
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How do we develop a rational consequence relation in FCA?
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Extending the Language

e In FCA, implications are defined over sets of attributes

® \We do not naturally have a way of expressing V or —

® Even if we want to restrict ourselves to these inexpressive implications, we need to
show that the pattern of non-monotonic reasoning corresponds to a rational
consequence relation

® So we extend the language to compound attributes

Definition (The Language L)
p:=m|d1ANg2| 9| d1V 2
m* = {g| (g, m) €I}
(61 A d2)" = 61 N 5
¢t =G\ ¢
(¢1V ) = d7U 3

12/23



Compound Attributes: Example

(G, M, ) =
Republican Quaker Pacifist
Nixon X X
Bush X
Penn X X

® RV = {Nixon, Bush}, @ = {Nixon, Penn}, P* = {Penn}
® Those objects that are not republicans, or pacifists
e (-RVP)} = (G\R')UP = {Penn}
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Cont.

(G, MU-RVP,I)=

‘Republican Quaker Pacifist —RVP

Nixon X X
Bush X
Penn X X X
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Preferential Context

® An analogue to the view of a partial order over valuations representing preference is
to order the objects in K

o A preferential context P = (G, M, I, <) where < is a partial-order over G.

\Sun Rain Wind Hot

Day 1 X X X X
Day 2 X

Day 3 X X X
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Defeasible Implications in FCA

Definition (Defeasible Implication over L)
A defeasible implication A |~ B € Ly holds in an preferential context P iff. the minimal
objects A¥ C B

@ Sun Rain Wind Hot
Day 1 X X X X
Day 2 X
@ Day 3 | X X X

® Hot |~ —Rain then holds in P since Hot* C —Rain*

® A partial order doesn't guarantee Rational Monotonicity
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Rational Monotonicity

a b, a b =y
alNy Py

@ ‘Sun Rain Wind Hot —Rain

Rational Monotonicity =

Day 1 X X X X
Day 2 X X
@ Day 3 | x X X X

1. P = Hot |~ —Rain
2. P = Hot ¢ —Wind
3. P}~ Hot A Wind |~ —rain (because of Day 1)
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Ranked Context

Definition

A ranked context R = (G, M, [,R, A) is a formal context with a ranking function
R: G — N, where the partial order imposed by R is modular, and A is a set of
(defeasible) constraints we place over (G, M, I).

Object g is more “typical” than g’ iff. R(g) < R(g’)

Modularity enforces that if two objects are incomparable then they occupy the same
rank

® A represents some external domain knowledge about how we expect objects in a
context to behave (i.e. that mammals are usually viviparous)

We derive R by a translated BaseRank algorithm (not shown)
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Ranked Context

y @ e
. @D A < & £ .

R k|8 & & L L # & & +
0 Swallow X X X X
Crow X X X X

1 Ostrich X X X X
Penguin X X X X X

2 Snake X X X
Whale X X X

3 Chameleon X X X X
Platypus X X X X X

® bird | aerial

® terrestrial Abird |~ —aerial

Table: A ranked context of some vertebrates
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Recap

® We argued that FCA could benefit from “softer” rules, enabling it to reason with
error-prone, or exceptional data

® Proposed KLM-style defeasible implications as an attempt to do this

® Requires a change from implications over attributes to implications over compound
attributes

® And that we place some order, encoding a view of typicality, over the object set

® Have an algorithm to determine this order, given some background information
about the context (not shown)
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Future Work & Paper

® |f we accept that defeasible implications contain useful information, it would be nice
to have consistency w.r.t concepts

® j.e. if bird |~ f1y then the concept derived from bird should contain fly
® This is the notion of a typical concept

® We would obviously like to then have a concept lattice for the set of typical concepts
- this is the tricky part

® |f you are interested, we have a paper “Non-monotonic Extensions to Formal
Concept Analysis via Object Preferences”

® Also, Ding, Yiwen, et al. " Defeasible Reasoning on Concepts.” arXiv preprint
arXiv:2409.04887 (2024)
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