
Designing Virtual Knowledge Graphs

Diego Calvanese

KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano, Italy

Ontopic s.r.l.

Tutorial at Cape-KR 2025

13 February 2025 – Cape Town, South Africa

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Outline

1 Motivation and VKG Solution

2 VKG Components

3 Formal Semantics and Query Answering

4 Designing a VKG System

5 Conclusions

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (0/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Outline

1 Motivation and VKG Solution

2 VKG Components

3 Formal Semantics and Query Answering

4 Designing a VKG System

5 Conclusions

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (0/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

The problem of data access in data management

In large organization data management is a complex challenge:
• Many different data sets are created independently.
• The data is heterogeneous in the way it is represented and structured.
• Data are often stored across different sources (possibly controlled by different

people / organizations).

The problem of data access
However, complex data processing pipelines (e.g., for analysis, monitoring
and prediction) require to access in an integrated and uniform way such

large, richly structured, and heterogeneus data sets.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (1/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

How can we address the complexity of data access?

We combine three key ideas:

1 Expose to users/applications the data in a very flexible data model, making use of terms the
users are familiar with
; Knowledge Graph whose vocabulary is expressed in a domain ontology / global schema.

2 Map the data sources to the global schema in order to provide the data for the KG.

3 Exploit virtualization, i.e., the KG is not materialized, but kept virtual.

This gives rise to the Virtual Knowledge Graph (VKG) approach to data access,
also called Ontology-based Data Access (OBDA).
[Xiao et al. 2018, IJCAI]

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (2/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Virtual Knowledge Graph (VKG) architecture

Mapping

VKG
Query

Query
Result Ontology

Data
Sources

•••

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (3/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Why an ontology?

An ontology is a structured formal representation of
concepts and their relationships that are relevant for the
domain of interest.

Mapping

Query Query
Result

Ontology
VKG

•••

Data
Sources

• In the VKG setting, the ontology has a twofold purpose:
• It defines a vocabulary of terms to denote classes and properties that are familiar to the user.
• It extends the data in the sources with background knowledge about the domain of interest, and this

knowledge is machine processable.
• One can make use of custom-built domain ontologies.
• In addition, one can rely on standard ontologies, which are available for many domains.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (4/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Why a Knowledge Graph for the global schema?

The traditional approach to data integration adopts a
relational global schema.

Mapping

Query Query
Result

Ontology
VKG

•••

Data
Sources

A Knowledge Graph, instead:

• Does not require to commit early on to a specific structure.
• Can better accommodate heterogeneity and deal with missing / incomplete information.
• Does not require complex restructuring to accommodate new information or new data sources.
• Can capture the semantics of the domain of interest, and allows for inference (via the ontology).
• Can be the basis for explanations.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (5/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Why mappings?

The traditional approach to data integration relies on
mediators, which are specified through complex code.

Mapping

Query Query
Result

Ontology
VKG

•••

Data
Sources

Mappings, instead:

• Provide a declarative specification, and not code.
• Are easier to understand, and hence to design and to maintain.
• Support an incremental approach to integration.
• Are machine processable, hence are used in query answering and for query optimization.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (6/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Why virtualization?

Materialized data integration relies on extract-transform-load
(ETL) operations, to load data from the sources into an
integrated data store / data warehouse / materialized KG.

Mapping

Query Query
Result

Ontology
VKG

•••

Data
Sources

In the virtual approach, instead:

• The data stays in the sources and is only accessed at query time.
• No need to construct a large and potentially costly materialized data store and keep it up-to-date.
• Hence the data is always fresh wrt the latest updates at the sources.
• One can rely on the existing data infrastructure and expertise.
• There is better support for an incremental approach to integration.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (7/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Incomplete information

We are in a setting of incomplete information!!!

Incompleteness is introduced:
• by data sources, in general assumed to be incomplete;
• by domain constraints encoded in the ontology. Mapping

Query Query
Result

Ontology
VKG

•••

Data
Sources

Plus:

Ontologies are logical theories, and hence perfectly
suited to deal with incomplete information!

m7
m6

m5
m3

m4
m2

m1

=

Ontology

Minus:

Query answering amounts to logical
inference, and hence is significantly
more challenging.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (8/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Components of the VKG framework

We consider now the main components that make up the
VKG framework, and the languages used to specify them.

In defining such languages, we need to consider the
tradeoff between expressive power and efficiency,
where the key point is efficiency with respect to the data.

Mapping

Query Query
Result

Ontology
VKG

•••

Data
Sources

The W3C has standardized languages that are suitable for VKGs:

1 Knowledge graph: expressed in RDF [W3C Rec. 2014] (v1.1)

2 Ontology O: expressed in OWL 2 QL [W3C Rec. 2012]

3 MappingM: expressed in R2RML [W3C Rec. 2012]

4 Query: expressed in SPARQL [W3C Rec. 2013] (v1.1)
Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (9/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Outline

1 Motivation and VKG Solution

2 VKG Components
Backbone: RDF
Representing Ontologies in OWL 2 QL
Query Language – SPARQL
Mapping an Ontology to a Relational Database

3 Formal Semantics and Query Answering

4 Designing a VKG System

5 Conclusions

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (9/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Outline

1 Motivation and VKG Solution

2 VKG Components
Backbone: RDF
Representing Ontologies in OWL 2 QL
Query Language – SPARQL
Mapping an Ontology to a Relational Database

3 Formal Semantics and Query Answering

4 Designing a VKG System

5 Conclusions

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (9/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Resource Description Framework (RDF)

• RDF is a language standardized by the W3C for representing information
[W3C Rec. 2004] (v1.0) and [W3C Rec. 2014] (v1.1).

• RDF is a graph-based data model, where information is represented as (labeled) nodes
connected by (labeled) edges.

• Nodes have three different forms:
• literal: denotes a constant value, with an associated datatype;
• IRI (for internationalized resource identifier): denotes a resource (i.e., an object), for which the IRI acts

as an identifier;
• blank node: represents an anonymous object.

• An IRI might also denote a property, connecting an object to a literal, or connecting two objects.

See also https://www.w3.org/TR/rdf11-concepts/ for details.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (10/110)

https://www.w3.org/TR/rdf11-concepts/

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF triples
RDF provides a description of the domain of interest in terms of triples:

Subject Predicate Object

<http://unibz.inf.di/data#person/2>

<http://xmlns.com//foaf/0.1/name>

"John"ˆˆxsd:string

Triple elements: resources denoted by global identifiers (IRIs)

1 Subject: IRI of the described resource

2 Predicate: IRI of the property

3 Object: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information
@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix : <http://unibz.inf.di/data#>

@base <http://unibz.inf.di/>

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (11/110)

<http://xmlns.com/foaf/0.1/>
http://unibz.inf.di/data#

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF triples
RDF provides a description of the domain of interest in terms of triples:

Subject Predicate Object

<:person/2>

foaf:name

"John"ˆˆxsd:string

Triple elements: resources denoted by global identifiers (IRIs)

1 Subject: IRI of the described resource

2 Predicate: IRI of the property

3 Object: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information
@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix : <http://unibz.inf.di/data#>

@base <http://unibz.inf.di/>

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (11/110)

<http://xmlns.com/foaf/0.1/>
http://unibz.inf.di/data#

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF triples
RDF provides a description of the domain of interest in terms of triples:

Subject Predicate Object

<data#person/2>

foaf:name

"John"ˆˆxsd:string

Triple elements: resources denoted by global identifiers (IRIs)

1 Subject: IRI of the described resource

2 Predicate: IRI of the property

3 Object: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information
@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix : <http://unibz.inf.di/data#>

@base <http://unibz.inf.di/>

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (11/110)

<http://xmlns.com/foaf/0.1/>
http://unibz.inf.di/data#

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF – Examples

Class membership:

RDF triple <uni2/p/25> rdf:type :Professor

Fact Professor(uni2/p/25)

Note: This is typically abbreviated as

RDF triple <uni2/p/25> a :Professor

Data property of an individual:

RDF triple <uni2/p/25> :lastName "Artale"

Fact lastName(uni2/p/25, ”Artale”)

Object property of an individual:

RDF triple <uni2/p/25> :teaches <uni2/c/7>

Fact teaches(uni2/p/25, uni2/c/7)

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (12/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF graph – Example

<uni2/p/25> rdf:type :Professor

<uni2/p/25> foaf:lastName "Artale"

<uni2/p/25> :teaches <uni2/c/5>

...

We can represent such a set of facts graphically:

Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (13/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF datatypes

• Datatypes are used with RDF literals to represent values such as strings, numbers, and dates.

• Each datatype is itself denoted by an IRI. E.g., the XML Schema built-in datatypes have IRIs of
the form http://www.w3.org/2001/XMLSchema#xxx

• Each datatype associates to elements in a lexical space (i.e., unicode strings) elements from a
value space.
Example:
• datatype: xsd:boolean
• lexical space: { “true”, “false”, “1”, “0” }
• value space: {true, false}

• To explicitly associate a datatype to a literal, we use the notation literalˆˆdatatype.
Example: 12.5ˆˆxsd:double, 1ˆˆxsd:integer

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (14/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

XML Schema built-in datatypes (recommended)
Datatype Value space (informative)

Core types xsd:string Character strings
xsd:boolean true, false
xsd:decimal Arbitrary-precision decimal numbers
xsd:integer Arbitrary-size integer numbers

IEEE floating-point xsd:float 32-bit floating point numbers incl. ±Inf, ±0, NaN
numbers xsd:double 64-bit floating point numbers incl. ±Inf, ±0, NaN
Time and date xsd:date Dates (yyyy-mm-dd) with or without timezone

xsd:time Times (hh:mm:ss.sss. . .) with or without timezone
xsd:datetime Date and time with or without timezone

Limited-range xsd:byte 8 bit integers (-128, . . . , +127)
integer numbers xsd:short 16 bit integers

xsd:int 32 bit integers
xsd:long 64 bit integers
xsd:unsignedByte 8 bit non-negative integers (0, . . . , 255)
xsd:unsignedShort 16 bit non-negative integers
. . .

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (15/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Additional RDF features

RDF has additional features that we do not cover here:

• blank nodes

• named graphs

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (16/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Outline

1 Motivation and VKG Solution

2 VKG Components
Backbone: RDF
Representing Ontologies in OWL 2 QL
Query Language – SPARQL
Mapping an Ontology to a Relational Database

3 Formal Semantics and Query Answering

4 Designing a VKG System

5 Conclusions

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (16/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

What is an ontology?

• An ontology conceptualizes a
domain of interest in terms of
concepts/classes,
(binary) relations, and
their properties.

• It typically organizes the concepts
in a hierarchical structure.

• Ontologies are often represented
as graphs.

• However, an ontology is actually a
logical theory, expressed in a
suitable fragment of first-order
logic, or better, in description
logics.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (17/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

What is an ontology?

• An ontology conceptualizes a
domain of interest in terms of
concepts/classes,
(binary) relations, and
their properties.

• It typically organizes the concepts
in a hierarchical structure.

• Ontologies are often represented
as graphs.

• However, an ontology is actually a
logical theory, expressed in a
suitable fragment of first-order
logic, or better, in description
logics.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (17/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

What is an ontology?

• An ontology conceptualizes a
domain of interest in terms of
concepts/classes,
(binary) relations, and
their properties.

• It typically organizes the concepts
in a hierarchical structure.

• Ontologies are often represented
as graphs.

• However, an ontology is actually a
logical theory, expressed in a
suitable fragment of first-order
logic, or better, in description
logics.

∀x. Actor(x)→ Staff(x)
∀x. SeriesActor(x)→ Actor(x)
∀x. MovieActor(x)→ Actor(x)
∀x. SeriesActor(x)→ ¬MovieActor(x)

∀x. Staff(x)→ ∃y. ssn(x, y)
∀y.∃x. ssn(x, y)→ xsd:int(y)
∀x, y, y′. ssn(x, y) ∧ ssn(x, y′)→ y = y′

∀x.∃y. actsIn(x, y)→ MovieActor(x)
∀y.∃x. actsIn(x, y)→ Movie(y)
∀x. MovieActor(x)→ ∃y. actsIn(x, y)
∀x. Movie(x)→ ∃y. actsIn(y, x)
∀x, y. actsIn(x, y)→ playsIn(x, y)
· · ·

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (17/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

What is an ontology?

• An ontology conceptualizes a
domain of interest in terms of
concepts/classes,
(binary) relations, and
their properties.

• It typically organizes the concepts
in a hierarchical structure.

• Ontologies are often represented
as graphs.

• However, an ontology is actually a
logical theory, expressed in a
suitable fragment of first-order
logic, or better, in description
logics.

Actor ⊑ Staff
SeriesActor ⊑ Actor
MovieActor ⊑ Actor
SeriesActor ⊑ ¬MovieActor

Staff ⊑ ∃ssn
∃ssn− ⊑ xsd:int

(funct ssn)

∃actsIn ⊑ MovieActor
∃actsIn− ⊑ Movie

MovieActor ⊑ ∃actsIn
Movie ⊑ ∃actsIn−

actsIn ⊑ playsIn
· · ·

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (17/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

The OWL 2 QL ontology language

• OWL 2 QL is one of the three standard profiles of OWL 2. [W3C Rec. 2012]

• Is derived from the DL-LiteR description logic (DL) [Baader et al. 2003] of the DL-Lite-family.

• Is considered a lightweight ontology language:
• controlled expressive power
• efficient inference

• Optimized for accessing large amounts of data (i.e., for data complexity):
• Queries over the data modulo the ontology can be rewritten into SQL queries over the underlying

relational database (First-order rewritability of query answering).
• Consistency of ontology and data can also be checked by executing SQL queries (i.e., it is also

first-order rewritable).

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (18/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Classes and properties in OWL 2 QL
All ontology languages based on OWL 2 (and hence also OWL 2 QL), provide three types of elements
to construct an ontology:

• Classes (also called concepts), which allow one to structure the domain of interest, by grouping
in a class objects with common properties.
Examples: Movie, Staff, Actor, SeriesActor, . . .
• Data properties (also called attributes), which are binary relations that relate objects to values

(or literals, in RDF terminology).
Examples:
• title, associating a string to a Movie;
• ssn, associating an integer to a Person.

• Object properties (also called roles), which are binary relations between objects.
Examples:
• actsIn, relating a MovieActor to a Movie;
• worksFor, relating an Employee to a Project.

In the following, to depict an OWL 2 QL ontology, we make use of a graphical notation inspired by
the one for UML class diagrams.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (19/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

OWL 2 QL knowledge bases
An OWL 2 QL knowledge base (KB) K = (O,G) consists of two parts:

An ontology O modeling the schema level information.
• Contains the declarations of the classes, data properties, and object properties of the ontology.

This constitutes the vocabulary with which we can then query the ontology.
• Contains the axioms that capture the domain knowledge.
• These axioms express the conditions that must hold for the classes and properties in the

ontology.

An RDF graph G, modeling the extensional level information (i.e., facts).

The RDF graph G consists of triples that express membership assertions of the following forms:
• An individual <a> belongs to a class :C: <a> rdf:type :C .

• A pair individual <a> and literal <l> belongs to a data property :A: <a> :A <l> .

• A pair of individuals <a1>, <a2> belongs to an object property :P: <a1> :P <a2> .

Note: As we will see later, in the VKG setting, the RDF graph of a KB is not given explicitly, but is
(usually) defined implicitly through the database(s) and the mappings.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (20/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Declaration of classes and of data properties

Declaration of a class C

C rdf:type owl:Class .

owl:Class is a predefined class in OWL 2,
whose instances are all the classes of an
ontology.

When a class has no data properties (or the
data properties are not of interest) we
represent the class simply as a rounded
rectangle that contains the class name.

Example:
Movie

Declaration of a data property A

A rdf:type owl:DatatypeProperty

owl:DatatypeProperty is a predefined class
in OWL 2, whose instances are all the data
properties of an ontology.

The data properties for a class are typically
depicted together with the class itself.
In that case, we split the rectangle in two, and
we specify the data properties of the class in
the bottom part.

Example: Movie
title: xsd:string
rating: xsd:float
subTitle: xsd:string [0..1]

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (21/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Declaration of object properties

Declaration of an object property P

P rdf:type owl:ObjectProperty .

owl:ObjectProperty is a predefined class in
OWL 2, whose instances are all object properties
of an ontology.

In the graphical notation, we represent an object property by an arrow that connects two classes and
that is labeled with the name of the object property.
Example:

MovieActor Movie
actsIn

m1..n1m2..n2

The arrow might additionally be labeled with cardinalities. These are pairs of numbers, representing
the minimum and maximum number of connections that an individual might have for the property.

Note: Each data property, and each direct and inverse object property has a cardinality.
In the graphical notation, when the cardinalities are missing, we assume the following defaults:
• [1..1] for a data property;
• 0..* (i.e., no constraint) for an object property;
• 0..* (i.e., no constraint) for the inverse of an object property.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (22/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Semantics of OWL 2 QL KBs

An interpretation I = (∆I, ·I) of a KB K = (O,G) consists of:

• a nonempty set ∆I, called the interpretation domain (of I), and
• an interpretation function ·I, which maps

• each constant (i.e., individual or literal) c to itself, i.e., cI = c; (standard name assumption)
• each class name C to a subset CI of ∆I
• each (object or data) property name P to a subset PI of ∆I × ∆I

• The interpretation function is then extended to cover the OWL 2 QL constructs:
(P−)I = {(y, x) | (x, y) ∈ PI} ∃RI = {x | there is some y such that (x, y) ∈ RI}

(¬C)I = ∆I \ CI

Model

An interpretation I is a model of a KB K = (O,G), denoted as I |= K , if it satisfies all axioms in O
and assertions in G.

In the next slides, we specify what these axioms/assertions are, as well as the satisfaction conditions.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (23/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Axioms in an OWL 2 QL ontology

We discuss now the various types of axioms that can be used in an OWL 2 QL ontology to capture
domain knowledge.

Notes:
• Some of these axioms are part of the RDF Schema (RDFS) language, which is a fragment of

OWL 2 QL, while others go beyond what can be expressed in RDFS.

• In the following, when we talk about a ’constant’ we mean either an individual a (denoted by an
IRI) or a literal ℓ.

• On the slides, for the assertions that make up the RDF graph, instead of the triple notation we
also make use of a more compact (abstract) notation:

C(a) for <a> rdf:type :C . (membership assertion in a class)
A(a, ℓ) for <a> :A <l> . (membership assertion in a data property)
P(a1, a2) for <a1> :P <a2> . (membership assertion in an object property)

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (24/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) a ∈ CI

Membership (data property) <a> :A <l> A(a, ℓ) (a, ℓ) ∈ AI

Membership (object property) <a1> :P <a2> P(a1, a2) (a1, a2) ∈ PI

Subclass assertion C1 rdfs:subClassOf C2 C1 ⊑ C2 CI1 ⊆ CI2
Class disjointness C1 owl:disjointWith C2 C1 ⊑ ¬C2 CI1 ⊆ ∆

I − CI2
Property disjointness P1 owl:propertyDisjointWith P2 P1 ⊑ ¬P2 PI1 ⊆ (∆I × ∆I) − PI2
Domain of a property P rdfs:domain C1 ∃P ⊑ C1 {x | ∃y.(x, y) ∈ PI} ⊆ CI1
Range of a property P rdfs:range C2 ∃P− ⊑ C2 {y | ∃x.(x, y) ∈ PI} ⊆ CI2
Mandatory participation using owl:someValuesFrom C ⊑ ∃R CI ⊆ ∃RI

Subproperty assertion P1 rdfs:subPropertyOf R2 P1 ⊑ R2 PI
1 ⊆ RI2

Inverse property P2 owl:inverseOf P1 P1 ≡ P−2 PI1 = {(y, x) | (x, y) ∈ PI2 }

• We have used R to denote either an object property P or the inverse P− of an object property.

• We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving
data properties.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (24/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF Schema – Class hierarchy

Class hierarchy

C1 rdfs:subClassOf C2 .
C1 ⊑ C2

When class C1 is declared to be a
sub-class of class C2, then every object
that is an instance of C1 is also an
instance of C2.

C1

C2

Example: :MovieActor rdfs:subClassOf :Actor .
Inference: <person/2> rdf:type :MovieActor .

=⇒ <person/2> rdf:type :Actor .

In DL notation: MovieActor ⊑ Actor
MovieActor(person/2) =⇒ Actor(person/2)

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (25/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) a ∈ CI

Membership (data property) <a> :A <l> A(a, ℓ) (a, ℓ) ∈ AI

Membership (object property) <a1> :P <a2> P(a1, a2) (a1, a2) ∈ PI

Subclass assertion C1 rdfs:subClassOf C2 C1 ⊑ C2 CI1 ⊆ CI2
Class disjointness C1 owl:disjointWith C2 C1 ⊑ ¬C2 CI1 ⊆ ∆

I − CI2
Property disjointness P1 owl:propertyDisjointWith P2 P1 ⊑ ¬P2 PI1 ⊆ (∆I × ∆I) − PI2
Domain of a property P rdfs:domain C1 ∃P ⊑ C1 {x | ∃y.(x, y) ∈ PI} ⊆ CI1
Range of a property P rdfs:range C2 ∃P− ⊑ C2 {y | ∃x.(x, y) ∈ PI} ⊆ CI2
Mandatory participation using owl:someValuesFrom C ⊑ ∃R CI ⊆ ∃RI

Subproperty assertion P1 rdfs:subPropertyOf R2 P1 ⊑ R2 PI
1 ⊆ RI2

Inverse property P2 owl:inverseOf P1 P1 ≡ P−2 PI1 = {(y, x) | (x, y) ∈ PI2 }

• We have used R to denote either an object property P or the inverse P− of an object property.

• We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving
data properties.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (25/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF Schema – Domain of an object property

Domain of an object property

P rdfs:domain C1 .
∃P ⊑ C1

C1 C2
P

When class C1 is declared to be the domain of object property P, it means that, whenever a pair
(o1, o2) is an instance of P, then o1 must be an instance of C1.
Said differently, the projection of P on its first component is a subclass of C1.

Example: :actsIn rdfs:domain :MovieActor .
Inference: <person/2> :actsIn <movie/3> .

=⇒ <person/2> rdf:type :MovieActor .

In DL notation: ∃actsIn ⊑ MovieActor
actsIn(person/2,movie/3) =⇒ MovieActor(person/2)

Note: In OWL 2 QL, the default cardinality for an object property is 0..*, as in our graphical notation.
Hence, the above diagram without cardinalities captures correctly the situation where in OWL 2 QL we
do not specify any cardinality for the object property.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (26/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) a ∈ CI

Membership (data property) <a> :A <l> A(a, ℓ) (a, ℓ) ∈ AI

Membership (object property) <a1> :P <a2> P(a1, a2) (a1, a2) ∈ PI

Subclass assertion C1 rdfs:subClassOf C2 C1 ⊑ C2 CI1 ⊆ CI2
Class disjointness C1 owl:disjointWith C2 C1 ⊑ ¬C2 CI1 ⊆ ∆

I − CI2
Property disjointness P1 owl:propertyDisjointWith P2 P1 ⊑ ¬P2 PI1 ⊆ (∆I × ∆I) − PI2
Domain of a property P rdfs:domain C1 ∃P ⊑ C1 {x | ∃y.(x, y) ∈ PI} ⊆ CI1
Range of a property P rdfs:range C2 ∃P− ⊑ C2 {y | ∃x.(x, y) ∈ PI} ⊆ CI2
Mandatory participation using owl:someValuesFrom C ⊑ ∃R CI ⊆ ∃RI

Subproperty assertion P1 rdfs:subPropertyOf R2 P1 ⊑ R2 PI
1 ⊆ RI2

Inverse property P2 owl:inverseOf P1 P1 ≡ P−2 PI1 = {(y, x) | (x, y) ∈ PI2 }

• We have used R to denote either an object property P or the inverse P− of an object property.

• We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving
data properties.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (26/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF Schema – Range of an object property

Range of an object property

P rdfs:range C2 .
∃P− ⊑ C2

C1 C2
P

When class C2 is declared to be the range of object property P, it means that, whenever a pair
(o1, o2) is an instance of P, then o2 must be an instance of C2.
Said differently, the projection of P on its second component is a subclass of C2.

Example: :actsIn rdfs:range :Movie .
Inference: <person/2> :actsIn <movie/3> .

=⇒ <movie/3> rdf:type :Movie .

In DL notation: ∃actsIn− ⊑ Movie
actsIn(person/2,movie/3) =⇒ Movie(movie/3)

Note: In OWL 2 QL, the default cardinality for the inverse of an object property is 0..*, and this is also
the default in our graphical notation. Hence, the above diagram captures correctly the situation where
in OWL 2 QL we do not specify any cardinality for the inverse of an object property.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (27/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) a ∈ CI

Membership (data property) <a> :A <l> A(a, ℓ) (a, ℓ) ∈ AI

Membership (object property) <a1> :P <a2> P(a1, a2) (a1, a2) ∈ PI

Subclass assertion C1 rdfs:subClassOf C2 C1 ⊑ C2 CI1 ⊆ CI2
Class disjointness C1 owl:disjointWith C2 C1 ⊑ ¬C2 CI1 ⊆ ∆

I − CI2
Property disjointness P1 owl:propertyDisjointWith P2 P1 ⊑ ¬P2 PI1 ⊆ (∆I × ∆I) − PI2
Domain of a property P rdfs:domain C1 ∃P ⊑ C1 {x | ∃y.(x, y) ∈ PI} ⊆ CI1
Range of a property P rdfs:range C2 ∃P− ⊑ C2 {y | ∃x.(x, y) ∈ PI} ⊆ CI2
Mandatory participation using owl:someValuesFrom C ⊑ ∃R CI ⊆ ∃RI

Subproperty assertion P1 rdfs:subPropertyOf R2 P1 ⊑ R2 PI
1 ⊆ RI2

Inverse property P2 owl:inverseOf P1 P1 ≡ P−2 PI1 = {(y, x) | (x, y) ∈ PI2 }

• We have used R to denote either an object property P or the inverse P− of an object property.

• We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving
data properties.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (27/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF Schema – Domain and range of a data property

Domain and range of a data property

A rdfs:domain C .
∃A ⊑ C

A rdfs:range T .
∃A− ⊑ T

C
A: T [0..*]

The declaration of the domain of a data property has the same meaning as for object properties.
As for the range, notice that the RDFS statement “A rdfs:range T.” is analogous to the one for
object properties.

Example: :title rdfs:domain :Movie .
:title rdfs:range xsd:string .

Inference: <movie/3> :title "Bladerunner" .
=⇒ <movie/3> rdf:type :Movie .

"Bladerunner" is of type xsd:string

In DL notation: ∃title ⊑ Movie Movie ⊑ ∀title.String
title(movie/3, "Bladerunner") =⇒ Movie(movie/3)

Note: In OWL 2 QL, the default cardinality
for a data property is [0..*], while in our
graphical notation we assume [1..1] as
the default. Hence, the above diagram
captures correctly the situation where in
OWL 2 QL we do not specify any
cardinality for the data property.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (28/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Domain and range of properties – OWL 2 QL vs. graphical notation

• Note that in our graphical notation, whenever we specify an object property, we need to connect
two classes, and therefore we are implicitly specifying the domain and range of the property.

• Something analogous holds for data properties, since we specify them within a class, and hence
we fix their domain.

• In OWL 2 QL, instead, we are not forced to specify the domain or the range of properties. We can
simply declare them, and leave them completely unconstrained.

• When a data property is unconstrained, this means that:
• the domain is owl:Thing, which is the class of all objects;
• the range is rdfs:Literal, which denotes the set of all possible literals.

• When an object property is unconstrained, this means that both its domain and its range are
owl:Thing.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (29/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) a ∈ CI

Membership (data property) <a> :A <l> A(a, ℓ) (a, ℓ) ∈ AI

Membership (object property) <a1> :P <a2> P(a1, a2) (a1, a2) ∈ PI

Subclass assertion C1 rdfs:subClassOf C2 C1 ⊑ C2 CI1 ⊆ CI2
Class disjointness C1 owl:disjointWith C2 C1 ⊑ ¬C2 CI1 ⊆ ∆

I − CI2
Property disjointness P1 owl:propertyDisjointWith P2 P1 ⊑ ¬P2 PI1 ⊆ (∆I × ∆I) − PI2
Domain of a property P rdfs:domain C1 ∃P ⊑ C1 {x | ∃y.(x, y) ∈ PI} ⊆ CI1
Range of a property P rdfs:range C2 ∃P− ⊑ C2 {y | ∃x.(x, y) ∈ PI} ⊆ CI2
Mandatory participation using owl:someValuesFrom C ⊑ ∃R CI ⊆ ∃RI

Subproperty assertion P1 rdfs:subPropertyOf R2 P1 ⊑ R2 PI
1 ⊆ RI2

Inverse property P2 owl:inverseOf P1 P1 ≡ P−2 PI1 = {(y, x) | (x, y) ∈ PI2 }

• We have used R to denote either an object property P or the inverse P− of an object property.

• We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving
data properties.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (29/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF Schema – Property hierarchy

Property hierarchy

P1 rdfs:subPropertyOf P2 .
P1 ⊑ P2

When a property P1 is declared to be a
sub-property of P2, then every pair of
objects that is an instance of P1 is also
an instance of P2.

C11

C12

C21

C22

P1

P2

Note: Typically, when a property P1 is a sub-property of a property P2, then the respective domains
and ranges are in a subclass relationship.

Example: :actsIn rdfs:subPropertyOf :playsIn .
Inference: <person/2> :actsIn <movie/3> .

=⇒ <person/2> :playsIn <movie/3> .

In DL notation: actsIn ⊑ playsIn
actsIn(person/2,movie/3) =⇒ playsIn(person/2,movie/3)

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (30/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) a ∈ CI

Membership (data property) <a> :A <l> A(a, ℓ) (a, ℓ) ∈ AI

Membership (object property) <a1> :P <a2> P(a1, a2) (a1, a2) ∈ PI

Subclass assertion C1 rdfs:subClassOf C2 C1 ⊑ C2 CI1 ⊆ CI2
Class disjointness C1 owl:disjointWith C2 C1 ⊑ ¬C2 CI1 ⊆ ∆

I − CI2
Property disjointness P1 owl:propertyDisjointWith P2 P1 ⊑ ¬P2 PI1 ⊆ (∆I × ∆I) − PI2
Domain of a property P rdfs:domain C1 ∃P ⊑ C1 {x | ∃y.(x, y) ∈ PI} ⊆ CI1
Range of a property P rdfs:range C2 ∃P− ⊑ C2 {y | ∃x.(x, y) ∈ PI} ⊆ CI2
Mandatory participation using owl:someValuesFrom C ⊑ ∃R CI ⊆ ∃RI

Subproperty assertion P1 rdfs:subPropertyOf R2 P1 ⊑ R2 PI
1 ⊆ RI2

Inverse property P2 owl:inverseOf P1 P1 ≡ P−2 PI1 = {(y, x) | (x, y) ∈ PI2 }

• We have used R to denote either an object property P or the inverse P− of an object property.

• We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving
data properties.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (30/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

OWL 2 QL – Inverse (object) property

Inverse property

P2 owl:inverseOf P1 .
P−2 ⊑ P1 and P−1 ⊑ P2

C1 C2
P1

P2 ⟨⟨inv P1⟩⟩

When a property P2 is declared to be the inverse of P1, we have that, (o1, o2) is an instance of P2 if
and only if (o2, o1) is an instance of P1.

Note: In the graphical notation that we adopt, there is no standard way to represent that one object
property is the inverse of another one. Therefore, we have introduced a notation resembling the one
used for stereotypes in UML.

Example: :playsIn owl:inverseOf :hasActor .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <movie/3> :hasActor <person/2> .

In DL notation: playsIn ⊑ hasActor− and hasActor− ⊑ playsIn
playsIn(person/2,movie/3) =⇒ hasActor(movie/3, person/2)

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (31/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) a ∈ CI

Membership (data property) <a> :A <l> A(a, ℓ) (a, ℓ) ∈ AI

Membership (object property) <a1> :P <a2> P(a1, a2) (a1, a2) ∈ PI

Subclass assertion C1 rdfs:subClassOf C2 C1 ⊑ C2 CI1 ⊆ CI2
Class disjointness C1 owl:disjointWith C2 C1 ⊑ ¬C2 CI1 ⊆ ∆

I − CI2
Property disjointness P1 owl:propertyDisjointWith P2 P1 ⊑ ¬P2 PI1 ⊆ (∆I × ∆I) − PI2
Domain of a property P rdfs:domain C1 ∃P ⊑ C1 {x | ∃y.(x, y) ∈ PI} ⊆ CI1
Range of a property P rdfs:range C2 ∃P− ⊑ C2 {y | ∃x.(x, y) ∈ PI} ⊆ CI2
Mandatory participation using owl:someValuesFrom C ⊑ ∃R CI ⊆ ∃RI

Subproperty assertion P1 rdfs:subPropertyOf R2 P1 ⊑ R2 PI
1 ⊆ RI2

Inverse property P2 owl:inverseOf P1 P1 ≡ P−2 PI1 = {(y, x) | (x, y) ∈ PI2 }

• We have used R to denote either an object property P or the inverse P− of an object property.

• We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving
data properties.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (31/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

OWL 2 QL – Class disjointness

Class disjointness

C1 owl:disjointWith C2 .
C1 ⊑ ¬C2

C1 C2

When two classes C1 and C2 are declared to be disjoint, then they can have no instances in
common. I.e., if o is an instance of C1, then it is not an instance of C2, and vice-versa.

Note: In the graphical notation that we adopt, there is no standard way to represent that two classes
are disjoint. Therefore, we have introduced a convenient graphical construct.
Moreover, when representing an ontology as a diagram, we assume that two classes that do not
belong to the same ISA hierarchy are disjoint.

Example: :Actor owl:disjointWith :Movie .
Inference: <person/2> rdf:type :Actor .

<person/2> rdf:type :Movie .

=⇒ RDF graph inconsistent with the ontology
In DL notation: Actor ⊑ ¬Movie

Actor(person/2), Movie(person/2) =⇒ RDF graph inconsistent with the ontology
Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (32/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) a ∈ CI

Membership (data property) <a> :A <l> A(a, ℓ) (a, ℓ) ∈ AI

Membership (object property) <a1> :P <a2> P(a1, a2) (a1, a2) ∈ PI

Subclass assertion C1 rdfs:subClassOf C2 C1 ⊑ C2 CI1 ⊆ CI2
Class disjointness C1 owl:disjointWith C2 C1 ⊑ ¬C2 CI1 ⊆ ∆

I − CI2
Property disjointness P1 owl:propertyDisjointWith P2 P1 ⊑ ¬P2 PI1 ⊆ (∆I × ∆I) − PI2
Domain of a property P rdfs:domain C1 ∃P ⊑ C1 {x | ∃y.(x, y) ∈ PI} ⊆ CI1
Range of a property P rdfs:range C2 ∃P− ⊑ C2 {y | ∃x.(x, y) ∈ PI} ⊆ CI2
Mandatory participation using owl:someValuesFrom C ⊑ ∃R CI ⊆ ∃RI

Subproperty assertion P1 rdfs:subPropertyOf R2 P1 ⊑ R2 PI
1 ⊆ RI2

Inverse property P2 owl:inverseOf P1 P1 ≡ P−2 PI1 = {(y, x) | (x, y) ∈ PI2 }

• We have used R to denote either an object property P or the inverse P− of an object property.

• We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving
data properties, except that we might not use the inverse of a data property.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (32/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

OWL 2 QL – Property disjointness

Property disjointness

P1 owl:propertyDisjointWith P2 .
P1 ⊑ ¬P2

C1 C2

P1

P2

When two properties P1 and P2 are declared to be disjoint, they can have no instances in common.

Note: In the graphical notation that we adopt, there is no standard way to represent that two object
properties are dijoint. Therefore, we have introduced a convenient graphical construct.
When the domain or the range of two properties are disjoint, then so are the properties. On the other
hand, there might be two properties that are disjoint, although their domain and range are not.

Example: :departFrom owl:propertyDisjointWith :arriveIn .
Inference: <flight/1> :departFrom <airport/5> .

<flight/1> :arriveIn <airport/5> .

=⇒ RDF graph inconsistent with the ontology

In DL notation: departFrom ⊑ ¬arriveIn
departFrom(flight/1, airport/5), arriveIn(flight/1, airport/5)

=⇒ RDF graph inconsistent with the ontology
Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (33/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) a ∈ CI

Membership (data property) <a> :A <l> A(a, ℓ) (a, ℓ) ∈ AI

Membership (object property) <a1> :P <a2> P(a1, a2) (a1, a2) ∈ PI

Subclass assertion C1 rdfs:subClassOf C2 C1 ⊑ C2 CI1 ⊆ CI2
Class disjointness C1 owl:disjointWith C2 C1 ⊑ ¬C2 CI1 ⊆ ∆

I − CI2
Property disjointness P1 owl:propertyDisjointWith P2 P1 ⊑ ¬P2 PI1 ⊆ (∆I × ∆I) − PI2
Domain of a property P rdfs:domain C1 ∃P ⊑ C1 {x | ∃y.(x, y) ∈ PI} ⊆ CI1
Range of a property P rdfs:range C2 ∃P− ⊑ C2 {y | ∃x.(x, y) ∈ PI} ⊆ CI2
Mandatory participation using owl:someValuesFrom C ⊑ ∃R CI ⊆ ∃RI

Subproperty assertion P1 rdfs:subPropertyOf R2 P1 ⊑ R2 PI
1 ⊆ RI2

Inverse property P2 owl:inverseOf P1 P1 ≡ P−2 PI1 = {(y, x) | (x, y) ∈ PI2 }

• We have used R to denote either an object property P or the inverse P− of an object property.

• We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving
data properties.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (33/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

OWL 2 QL – Mandatory and optional participation to an object property

Mandatory participation

C1 rdfs:subClassOf
[rdf:type owl:Restriction ;
owl:onProperty P ;
owl:someValuesFrom owl:Thing .

] .

C1 ⊑ ∃P

C1 C2
P

1..*

When class C1 is declared to have a mandatory participation to object property P, it means that for
every instance o1 of C1 there must exist an object o2 such that the pair (o1, o2) is an instance of P.
Said differently, C1 is a subclass of the projection of P on its first component.

Note: In the graphical notation, the mandatory participation is indicated by a minimum cardinality of 1
associated to the object property. Instead, when the minimum cardinality is 0, the property is
optional for the instances of the class.
Recall that in the graphical notation, the default cardinality is 0..*, hence we have a mandatory
participation only when the cardinality is specified explicitly in the diagram. This is as in OWL 2 QL,
where mandatory participation needs to be asserted explicitly through an axiom.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (34/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

OWL 2 QL – Mandatory participation – Example

Example:
:SeriesActor rdfs:subClassOf

[rdf:type owl:Restriction ;
owl:onProperty :playsIn ;
owl:someValuesFrom owl:Thing .] .

Inference: <person/5> rdf:type :SeriesActor .
=⇒

<person/5> rdf:type

[rdf:type owl:Restriction ;

owl:onProperty :playsIn ;

owl:someValuesFrom owl:Thing .] .

In DL notation: SeriesActor ⊑ ∃playsIn
SeriesActor(person/5) =⇒ playsIn(person/5, s), for some s

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (35/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

OWL 2 QL – Mandatory and optional data property

A mandatory participation to a data property can be expressed in OWL 2 QL in the same way as for
an object property, except that we use rdfs:Literal instead of owl:Thing. In the graphical
notation, it is indicated by a minimum cardinality of 1 associated to the data property.

Mandatory data property

C rdfs:subClassOf
[rdf:type owl:Restriction ;
owl:onProperty A ;
owl:someValuesFrom rdfs:Literal .

] .

C ⊑ ∃A

C
A1: T1 [1..*]
A2: T2 [1..1]

Note: For data properties, in the graphical notation the default cardinality is [1..1], hence in a diagram
data properties are mandatory by default.
Instead, when the minimum cardinality is 0, the data property is optional, which is the default in
OWL 2 QL.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (36/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) a ∈ CI

Membership (data property) <a> :A <l> A(a, ℓ) (a, ℓ) ∈ AI

Membership (object property) <a1> :P <a2> P(a1, a2) (a1, a2) ∈ PI

Subclass assertion C1 rdfs:subClassOf C2 C1 ⊑ C2 CI1 ⊆ CI2
Class disjointness C1 owl:disjointWith C2 C1 ⊑ ¬C2 CI1 ⊆ ∆

I − CI2
Property disjointness P1 owl:propertyDisjointWith P2 P1 ⊑ ¬P2 PI1 ⊆ (∆I × ∆I) − PI2
Domain of a property P rdfs:domain C1 ∃P ⊑ C1 {x | ∃y.(x, y) ∈ PI} ⊆ CI1
Range of a property P rdfs:range C2 ∃P− ⊑ C2 {y | ∃x.(x, y) ∈ PI} ⊆ CI2
Mandatory participation using owl:someValuesFrom C ⊑ ∃R CI ⊆ ∃RI

Subproperty assertion P1 rdfs:subPropertyOf R2 P1 ⊑ R2 PI
1 ⊆ RI2

Inverse property P2 owl:inverseOf P1 P1 ≡ P−2 PI1 = {(y, x) | (x, y) ∈ PI2 }

• We have used R to denote either an object property P or the inverse P− of an object property.

• We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving
data properties.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (36/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Representing OWL 2 QL ontologies as UML class diagrams/ER schemas
There is a close correspondence between OWL 2 QL and conceptual modeling formalisms, such as
UML class diagrams and ER schemas [Lenzerini & Nobili 1990; Bergamaschi & Sartori 1992; Borgida 1995;
C., Lenzerini, et al. 1999; Borgida & Brachman 2003; Berardi et al. 2005; Queralt et al. 2012].

SeriesActor ⊑ Actor
SeriesActor ⊑ ¬MovieActor
∃playsIn ⊑ Actor
∃playsIn− ⊑ Play

MovieActor ⊑ ∃actsIn
actsIn ⊑ playsIn

· · ·

rdfs:subClassOf

owl:disjointWith

rdfs:domain

rdfs:range

owl:someValuesFrom

rdfs:subPropertyOf

subclass
disjointness
domain
range
mandatory participation
sub-association

Actor
name: String

SeriesActor MovieActor

Play
title: String

Movie
rating: Float

actsIn

1..*

playsIn

In fact, to visualize an OWL 2 QL
ontology, we could have used
standard UML class diagrams,
instead of the specific graphical
notation that we have introduced.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (37/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Representing OWL 2 QL ontologies as UML class diagrams/ER schemas
There is a close correspondence between OWL 2 QL and conceptual modeling formalisms, such as
UML class diagrams and ER schemas [Lenzerini & Nobili 1990; Bergamaschi & Sartori 1992; Borgida 1995;
C., Lenzerini, et al. 1999; Borgida & Brachman 2003; Berardi et al. 2005; Queralt et al. 2012].

SeriesActor ⊑ Actor
SeriesActor ⊑ ¬MovieActor
∃playsIn ⊑ Actor
∃playsIn− ⊑ Play

MovieActor ⊑ ∃actsIn
actsIn ⊑ playsIn

· · ·

rdfs:subClassOf

owl:disjointWith

rdfs:domain

rdfs:range

owl:someValuesFrom

rdfs:subPropertyOf

subclass
disjointness
domain
range
mandatory participation
sub-association

Actor
name: String

SeriesActor MovieActor

Play
title: String

Movie
rating: Float

actsIn

1..⋆▶

playsIn
▶

{disjoint}

In fact, to visualize an OWL 2 QL
ontology, we could have used
standard UML class diagrams,
instead of the specific graphical
notation that we have introduced.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (37/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Outline

1 Motivation and VKG Solution

2 VKG Components
Backbone: RDF
Representing Ontologies in OWL 2 QL
Query Language – SPARQL
Mapping an Ontology to a Relational Database

3 Formal Semantics and Query Answering

4 Designing a VKG System

5 Conclusions

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (37/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Query answering – Which query language to use

Querying under incomplete information

Query answering is not simply query evaluation, but a form of logical
inference, and requires reasoning.

Two borderline cases for choosing the language for querying KBs:

1 Use the ontology language as query language.
• Ontology languages are tailored for capturing intensional relationships.
• They are quite poor as query languages.

2 Use Full SQL (or equivalently, first-order logic).
• Problem: in a setting with incomplete information, query answering is undecidable (FOL validity).

Conjunctive queries – Are concretely represented in SPARQL

A good tradeoff is to use conjunctive queries (CQs) or unions of CQs (UCQs), corresponding to
SQL/relational algebra (union) select-project-join queries.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (38/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

SPARQL query language
• Is the standard query language for RDF data. [W3C Rec. 2008, 2013]
• Core query mechanism is based on graph matching.

SELECT ?p ?t
WHERE { ?p rdf:type Professor .

?p teaches ?c .

?c rdf:type Course .

?c title ?t .

}

?p

Professor

?c

Course

?t

rdf:type

teaches

rdf:type

title

Additional language features (SPARQL 1.1):
• UNION: matches one of alternative graph patterns
• OPTIONAL: produces a match even when part of the pattern is missing
• complex FILTER conditions
• GROUP BY, to express aggregations
• MINUS, to remove possible solutions
• property paths (regular expressions)
• · · ·

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (39/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

SPARQL Basic Graph Patterns

Basic Graph Pattern (BGP) are the simplest form of SPARQL query, asking for a pattern in the RDF
graph, made up of triple patterns.

Example: BGP

SELECT ?p ?ln ?c ?t
WHERE {
?p :lastName ?ln .

?p :teaches ?c .

?c :title ?t .

}

When evaluated over the RDF graph
Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

. . . the query returns:
p ln c t

<uni2/p/25> "Artale" <uni2/c/5> "Databases"

<uni2/p/25> "Artale" <uni2/c/7> "KR"

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (40/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Abbreviated syntax for Basic Graph Patterns

We can use an abbreviated syntax for BGPs, that avoids repeating the subject of triple patterns.

Example: BGP

SELECT ?p ?ln ?c ?t ?r
WHERE {
?p :lastName ?ln .

?p :teaches ?c .

?c :title ?t .

?c :room ?r .

}

Example: BGP with abbreviated syntax

SELECT ?p ?ln ?c ?t ?r
WHERE {
?p :lastName ?ln ;

:teaches ?c .

?c :title ?t ;

:room ?r .

}

When we end a triple pattern with a ’;’ (instead of ’.’), the next triple pattern uses the same subject
(which therefore is not repeated).

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (41/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Projecting out variables in a SPARQL query

A query may also return only a subset of the variables used in the BGP.

Example: BGP with projection

SELECT ?ln ?t
WHERE {
?p :lastName ?ln .

?p :teaches ?c .

?c :title ?t .

}

When evaluated over the RDF graph
Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

. . . the query returns:
ln t

"Artale" "Databases"

"Artale" "KR"

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (42/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Anonymous variables

We can use [...] to represent an anonymous variable.

Example: BGP

SELECT ?ln ?t ?r
WHERE {
?p :lastName ?ln ;

:teaches ?c .

?c :title ?t ;

:room ?r .

}

Example: BGP with anonymous variable

SELECT ?ln ?t ?r
WHERE {
?p :lastName ?ln ;

:teaches

[:title ?t ;

:room ?r .] .

}

Within the square brackets, the triple patterns, separated by ’;’, all have the anonymous variable as
subject.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (43/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Union of Basic Graph Patterns

Example: BGPs with UNION

SELECT ?p ?ln ?c
WHERE {
{ ?p :lastName ?ln . ?p :teaches ?c . }

UNION
{ ?p :lastName ?ln . ?p :givesLab ?c . }

}

When evaluated over
Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

. . . the query returns:

p ln c

<uni2/p/25> "Artale" <uni2/c/5>

<uni2/p/25> "Artale" <uni2/c/7>

<uni2/p/38> "Rossi" <uni2/c/5>

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (44/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Extending BGPs with OPTIONAL

We might want to add information when available, but not reject a solution when some part of the
query does not match.

Example: BGP with OPTIONAL

SELECT ?p ?fn ?ln
WHERE {
?p :lastName ?ln .

OPTIONAL {
?p :firstName ?fn .

}

}

When evaluated over the RDF graph
Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

. . . the query returns:
p fn ln

<uni2/p/25> "Artale"

<uni2/p/38> "Anna" "Rossi"

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (45/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

ORDER BY, LIMIT, and OFFSET
We might be interested in obtaining the results in a certain order, and/or only some of the results.
This is controlled by three clauses, appended to the WHERE {} block: ORDER BY, LIMIT, and OFFSET.

Example: Ordering and limiting the results

SELECT ?ln ?t ?r
WHERE {
?p :lastName ?ln ;

:teaches ?c .

?c :title ?t ; :room ?r .

}

ORDER BY ?ln
LIMIT 10
OFFSET 5

Example: Multiple order comparators

SELECT ?ln ?t ?r
WHERE {
?p :lastName ?ln ;

:teaches ?c .

?c :title ?t ; :room ?r .

}

ORDER BY ASC(?ln) DESC(?t)

The default is no limit, and offset 0.

Each order comparator consists of an expression, with an optional order modifier applied to it:
• ASC() for ascending order, which is the default;
• DESC() for descending order.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (46/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

FILTER conditions
We might want to select only those answers to a query that respect some condition.
This can be achieved by adding to the query one or more FILTER conditions.

Example: BGP with a FILTER condition

SELECT ?ln ?dob
WHERE {
?p :lastName ?ln ; :isBorn ?dob .

FILTER("1990-01-01"ˆˆxsd:dateTime <= ?dob &&

?dob < "1996-01-01"ˆˆxsd:dateTime) .

}

More in general, the argument of FILTER() is an expression returning an xsd:boolean, built using:
• comparison atoms, which use the comparison operators: =, !=, <, >, <=, >=;
• logical connectives: && and ||;
• EXISTS { pattern } and NOT EXISTS { pattern }, where pattern is a graph pattern;
• SPARQL functions (for more details, see the document defining the SPARQL standard).

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (47/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

SPARQL algebra

We have seen the following features of the SPARQL algebra:
• Basic Graph Patterns
• UNION

• OPTIONAL

• ORDER BY, LIMIT, OFFSET
• FILTER conditions

The overall algebra has additional features:
• GROUP BY, to express aggregations and support aggregation operators
• MINUS, to remove possible solutions
• path expressions, corresponding to regular expressions

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (48/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Outline

1 Motivation and VKG Solution

2 VKG Components
Backbone: RDF
Representing Ontologies in OWL 2 QL
Query Language – SPARQL
Mapping an Ontology to a Relational Database

3 Formal Semantics and Query Answering

4 Designing a VKG System

5 Conclusions

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (48/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Use of mappings

In the VKG framework, the mapping encodes how the data in the sources should be used to create
the Virtual Knowledge Graph, which is formulated in the vocabulary of the ontology.

VKG defined from the mapping and the data.
• Queries are answered with respect to the ontology and

the data of the VKG.
• The data of the VKG is not materialized (it is virtual!).
• Instead, the information in the ontology and the

mapping is used to translate queries over the ontology
into queries formulated over the sources.

Note: The graph is always up to date wrt the data sources.

Mapping

Query Query
Result

Ontology
VKG

•••

Data
Sources

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (49/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mismatch between data layer and ontology

Impedance mismatch
• Relational databases store values.
• Knowledge bases / ontologies represent both objects and values.

We need to construct the ontology objects from the database values.

Proposed solution

The specification of how to construct the ontology objects that populate the virtual knowledge
graph from the database values is embedded in the mapping between the data sources and the
ontology.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (50/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

VKG mapping

The mapping consists of a set of assertions of the form:

Qsql (⃗x) ⇝ Ψ(⃗t, x⃗)

• Qsql (⃗x) is the source query expressed in SQL.
• Ψ(⃗t, x⃗) is the target, consisting of a set of triple patterns (i.e., atoms) that refer to the classes

and properties of the ontology and make use of the answer variables x⃗ of the SQL query.

To address the impedance mismatch, in the target query:
• we specify how to construct valid IRIs (that act as object identifiers), by concatenating database

values and string constants;
• to refer to a database value, we use an answer variable of the source query;
• we call a term that constructs an IRI by referring to answer variables of the source query, an

IRI-template.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (51/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Triple patterns and IRI-templates

Intuition behind the mapping

The answers returned by the SQL query in the source-part of the mapping are used to create, via the
IRI-templates, the objects (and values) that populate the classes / properties in the target part.

More precisely:
• Each triple pattern in the target part has one of the forms:

iri1 (⃗x1) rdf:type C where C is a class of the ontology, or
iri1 (⃗x1) prop iri2 (⃗x2) where prop is a (data or object) property of the ontology.

• For each answer tuple a⃗ returned by the source query Qsql (⃗x) (when evaluated over the
database), the iri-template irii (⃗xi) generates an object / value irii(a⃗i) of the VKG.
• Such objects / values are then used to populate the classes and properties of the ontology

according to what specified in the target part of the mapping.

In this way we provide a solution to the impedance mismatch problem.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (52/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

A concrete mapping language
We describe the concrete mapping language adopted by the Ontop system.

In the Ontop mapping language, each mapping assertion is made up of three parts:
• A mapping identifier, which is convenient to refer to a specific mapping.
• The source part, which is a regular SQL query over the data source(s).
• The target part, which is a set of triple patterns that make use of IRI-templates.

In the target part, the answer variables of the source part are enclosed in {. . . }.

Mapping m1

• Mapping identifier: m1
• Source part:
SELECT mcode, mtitle
FROM MOVIE
WHERE type = "m"

• Target part:
:m/{mcode} rdf:type :Movie .

:m/{mcode} :title {mtitle} .

Mapping m2

• Mapping identifier: m2
• Source part:
SELECT M.mcode, A.acode
FROM MOVIE M, ACTOR A
WHERE M.mcode = A.pcode
AND M.type = "m"

• Target part:
:a/{acode} :actsIn :m/{mcode} .

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (53/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping language – Example

Ontology O:

Actor
name: String

SeriesActor MovieActor

Play
title: String

Movie
rating: Float

actsIn

1..*

playsIn

MappingM:
m1: SELECT mcode, mtitle FROM MOVIE
WHERE type = "m"
⇝ :m/{mcode} rdf:type :Movie .
:m/{mcode} :title {mtitle} .

m2: SELECT M.mcode, A.acode FROM MOVIE M, ACTOR A
WHERE M.mcode = A.pcode AND M.type = "m"
⇝ :a/{acode} :actsIn :m/{mcode} .

Database D:
MOVIE

mcode mtitle myear type · · ·

5118 The Matrix 1999 m · · ·

8234 Altered Carbon 2018 s · · ·

2281 Blade Runner 1982 m · · ·

ACTOR

pcode acode aname · · ·

5118 438 K. Reeves · · ·

5118 572 C.A. Moss · · ·

2281 271 H. Ford · · ·

The mappingM applied to database D generates the virtual knowledge graphM(D):
:m/5118 rdf:type :Movie . :m/5118 :title "The Matrix" .

:m/2281 rdf:type :Movie . :m/2281 :title "Blade Runner" .

:a/438 :actsIn :m/5118 . :a/572 :actsIn :m/5118 . :a/271 :actsIn :m/2281 .

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (54/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Standard mapping languages

Several proposals for concrete languages to map a relational DB to an ontology:
• They assume that the ontology is populated in terms of RDF triples.
• Some template mechanism is used to specify the triples to instantiate.

Examples: D2RQ1, SML2, Ontop3

R2RML
• Most popular RDB to RDF mapping language
• W3C Recommendation 27 Sep. 2012, http://www.w3.org/TR/r2rml/

• R2RML mappings are themselves expressed as RDF graphs and written in Turtle syntax.

1http://d2rq.org/d2rq-language
2http://sparqlify.org/wiki/Sparqlification_mapping_language
3https://github.com/ontop/ontop/wiki/ontopOBDAModel#Mapping_axioms

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (55/110)

http://www.w3.org/TR/r2rml/
http://d2rq.org/d2rq-language
http://sparqlify.org/wiki/Sparqlification_mapping_language
https://github.com/ontop/ontop/wiki/ontopOBDAModel#Mapping_axioms

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Outline

1 Motivation and VKG Solution

2 VKG Components

3 Formal Semantics and Query Answering

4 Designing a VKG System

5 Conclusions

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (55/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

VKGs: Formalization

Mapping

VKG
Query

Query
Result Ontology

Data
Sources

To formalize VKGs, we distinguish between the intensional and the
extensional level information.

A VKG specification is a triple P = (O,M,S), where:
• O is an ontology (expressed in OWL 2 QL),
• S is a (possibly federated) relational database schema for the data sources, possibly with

integrity constraints,
• M is a set of (R2RML) mapping assertions between O and S.

A VKG instance is a pair J = (P,D), where
• P = (O,M,S) is a VKG specification, and
• D is a (possibly federated) relational database compliant with S.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (56/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Semantics of VKGs

Mapping

Query Query
Result

Ontology
VKG

•••

Data
Sources

Remember:
• The mappingM generates from the data D in the sources a

virtual knowledge graphV =M(D).
• Therefore, the pair (O,M(D)) is a knowledge base.
• Semantics for a VKG instance can thus be defined in terms of

the semantics of a KB.

Model of a VKG instance

An interpretation I is a model of (P,D), denoted as I |= (P,D), if I
is a model of the KB (O,M(D)).

Note:
• In general, (P,D) has infinitely many models, and some of these might be infinite.
• However, for query answering, we do not need to compute such models.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (57/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Example of VKG instance and corresponding KB

User

A owl:subclassOf B;

C owl:disjointWith A.

Ontology O

KB (O, M(D))

DB D

SELECT id FROM T1 ù :a/{id} a :A
SELECT id FROM T2 ù :b/{id} a :B

Mapping M

Physical Layer

queries

exposes

VKG M(D)

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (58/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Example of VKG instance and corresponding KB

User

A owl:subclassOf B;

C owl:disjointWith A.

Ontology O

KB (O, M(D))

DB D

id ...

1 ...

2 ...

3 ...

5 ...

T1

id ...

1 ...

2 ...

4 ...

6 ...

T2

SELECT id FROM T1 ù :a/{id} a :A
SELECT id FROM T2 ù :b/{id} a :B

Mapping M

Physical Layer

queries

exposes

VKG M(D)

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (58/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Example of VKG instance and corresponding KB

User
:a/1 a A.

:b/1 a B.

:a/2 a A.

...

A owl:subclassOf B;

C owl:disjointWith A.

Ontology O

KB (O, M(D))

DB D

id ...

1 ...

2 ...

3 ...

5 ...

T1

id ...

1 ...

2 ...

4 ...

6 ...

T2

SELECT id FROM T1 ù :a/{id} a :A
SELECT id FROM T2 ù :b/{id} a :B

Mapping M

Physical Layer

queries

exposes

VKG M(D)

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (58/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Query answering in KBs – Certain answers
In VKGs, we want to answer queries formulated over the ontology, by using the data provided by the
data sources through the mapping.

Consider our formalization of VKGs and a VKG instance J .

Certain answers cert(q,J) – Intuition

Given a VKG instance J and a query q over J , the certain answers cert(q,J) to q over J are those
answers to q that hold in every model of J .

Certain answers cert(q,J) – Formal definition

Given a VKG instance J = (P,D) and a query q over J , a tuple c⃗ of constants inM(D) is a certain
answer to q over J , i.e., c⃗ ∈ cert(q,J), if for every model I of J we have that c⃗ ∈ eval(q,I).

Note: Each certain answer c⃗ is a tuple of constants inM(D), but when we evaluate q over an interpretation I, it
returns tuples of elements of ∆I. Therefore, we should actually require that c⃗I ∈ eval(q,I), and not that
c⃗ ∈ eval(q,I).
However, due to the standard names assumption, we have that c⃗I = c⃗, so the two conditions are equivalent.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (59/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

First-order rewritability

To make computing certain answers viable in practice, the VKG setting relies on reducing it to
evaluating SQL (i.e., first-order logic) queries over the data.

Consider a VKG specification P = (O,M,S).

First-order rewritability

A query r(⃗x) is a first-order rewriting of a query q(⃗x) with respect to P if, for every source DB D,
certain answers to q(⃗x) over (P,D) = answers to r(⃗x) overM(D).

For OWL 2 QL ontologies and (a subset of) R2RML mappings,
(core) SPARQL queries are first-order rewritable.

In other words, in VKGs, we can compute the certain answers to a SPARQL query by
evaluating over the sources its rewriting, which is a SQL query.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (60/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Under the hood: Query evaluation process I

SPARQL query q Rewriting Rewritten Query qrew

A owl:subclassOf B;

C owl:disjointWith A.

OWL 2 QL Ontology O

Unfolding

SELECT id FROM T1 ù :a/{id} a :A
SELECT id FROM T2 ù :b/{id} a :B

Mapping M

Unfolded Query qunf

EvaluationSQL ResultRes. TranslationSPARQL Result

DB D

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (61/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Under the hood: Query evaluation process II

SPARQL query q Rewriting

{?x a B.}

Rewritten Query qrew

A owl:subclassOf B;

C owl:disjointWith A.

OWL 2 QL Ontology O

Unfolding

SELECT id FROM T1 ù :a/{id} a :A
SELECT id FROM T2 ù :b/{id} a :B

Mapping M

Unfolded Query qunf

EvaluationSQL ResultRes. TranslationSPARQL Result

DB D

• Problem: Find Ans := cert(q, (P,D)) := cert(q, (O,M(D))) (certain answers)
• with cert(...) defined as

⋂
I|=(O,M(D)) eval(q,I) (query evaluation)

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (61/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Under the hood: Query evaluation process III

SPARQL query q Rewriting

{?x a B.}

Rewritten Query qrew

{?x a B.} UNION {?x a A.}

A owl:subclassOf B;

C owl:disjointWith A.

OWL 2 QL Ontology O

Unfolding

SELECT id FROM T1 ù :a/{id} a :A
SELECT id FROM T2 ù :b/{id} a :B

Mapping M

Unfolded Query qunf

EvaluationSQL ResultRes. TranslationSPARQL Result

DB D

• Problem: Find Ans := cert(q, (P,D))
• qrew is a rewriting ; Ans = eval(qrew, can(M(D))) [C., De Giacomo, et al. 2007]

where can(M(D)) denotes the (unique) model for the VKG

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (61/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Under the hood: Query evaluation process IV

SPARQL query q Rewriting

{?x a B.}

Rewritten Query qrew

{?x a B.} UNION {?x a A.}

A owl:subclassOf B;

C owl:disjointWith A.

OWL 2 QL Ontology O

Unfolding

SELECT id FROM T1 ù :a/{id} a :A
SELECT id FROM T2 ù :b/{id} a :B

Mapping M

Unfolded Query qunf

SELECT id,“:b” AS t
FROM T2
UNION
SELECT id, “:a” AS t
FROM T1

EvaluationSQL ResultRes. TranslationSPARQL Result

DB D

• Problem: Find Ans := cert(q, (P,D))
• qrew is a rewriting ; Ans = eval(qrew, can(M(D))) [C., De Giacomo, et al. 2007]
• qunf is a translation ; Ans = eval(qunf ,D) [Poggi et al. 2008]

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (61/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Under the hood: Query evaluation process V

SPARQL query q Rewriting

{?x a B.}

Rewritten Query qrew

{?x a B.} UNION {?x a A.}

A owl:subclassOf B;

C owl:disjointWith A.

OWL 2 QL Ontology O

Unfolding

SELECT id FROM T1 ù :a/{id} a :A
SELECT id FROM T2 ù :b/{id} a :B

Mapping M

Unfolded Query qunf

SELECT id,“:b” AS t
FROM T2
UNION
SELECT id, “:a” AS t
FROM T1

EvaluationSQL Resultid t

1 “:a”

2 “:a”

1 “:b”

2 “:b”

... ...

Res. TranslationSPARQL Result

DB D

• Problem: Find Ans := cert(q, (P,D))
• qrew is a rewriting ; Ans = eval(qrew, can(M(D))) [C., De Giacomo, et al. 2007]
• qunf is a translation ; Ans = eval(qunf ,D) [Poggi et al. 2008]

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (61/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Under the hood: Query evaluation process VI

SPARQL query q Rewriting

{?x a B.}

Rewritten Query qrew

{?x a B.} UNION {?x a A.}

A owl:subclassOf B;

C owl:disjointWith A.

OWL 2 QL Ontology O

Unfolding

SELECT id FROM T1 ù :a/{id} a :A
SELECT id FROM T2 ù :b/{id} a :B

Mapping M

Unfolded Query qunf

SELECT id,“:b” AS t
FROM T2
UNION
SELECT id, “:a” AS t
FROM T1

EvaluationSQL Resultid t

1 “:a”

2 “:a”

1 “:b”

2 “:b”

... ...

Res. TranslationSPARQL Result

DB D

?x

:a/1

:a/2

:b/1

:b/2

...

• Problem: Find Ans := cert(q, (P,D))
• qrew is a rewriting ; Ans = eval(qrew, can(M(D))) [C., De Giacomo, et al. 2007]
• qunf is a translation ; Ans = eval(qunf ,D) [Poggi et al. 2008]

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (61/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

The Ontop system [C., Cogrel, et al. 2017, Semantic Web J.], [XLKK*20]

https://ontop-vkg.org/

• State-of-the-art VKG system.

• Addresses the key challenges in query answering of scalability and performance.

• Compliant with all relevant Semantic Web standards:
RDF, RDFS, OWL 2 QL, R2RML, SPARQL, and GeoSPARQL.

• Supports all major relational DBMSs:
Oracle, DB2, MS SQL Server, Postgres, MySQL, Teiid, Dremio, Denodo, etc.

• Open-source and released under Apache 2 license.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (62/110)

https://ontop-vkg.org/

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Query answering in Ontop

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (63/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Outline

1 Motivation and VKG Solution

2 VKG Components

3 Formal Semantics and Query Answering

4 Designing a VKG System
Ontology and Mapping Design
VKG Mapping Patterns
VKG Design Scenarios

5 Conclusions

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (63/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Outline

1 Motivation and VKG Solution

2 VKG Components

3 Formal Semantics and Query Answering

4 Designing a VKG System
Ontology and Mapping Design
VKG Mapping Patterns
VKG Design Scenarios

5 Conclusions

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (63/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Who provides the ontology?

• Designing an ontology is not an easy task.

• In many domains (e.g., the biomedical one) ontologies are developed independently by trained
experts and are already available to be re-used.

• Having “standardized ontologies” enables interoperability across different data sources.

• However, ontology design is a well investigated task, and methodologies and supporting tools
are readily available. See, e.g.,
• the series of Workshops on Ontology Design Patterns http://ontologydesignpatterns.org/;
• the OntoClean methodology for ontology analysis based on formal, domain-independent properties of

classes [Guarino & Welty 2009].

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (64/110)

http://ontologydesignpatterns.org/

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Who provides the mappings?
VKG mappings:

• Map complex queries to complex queries – cf. GLAV relational mappings [Lenzerini 2002].

• Overcome the abstraction mismatch between relational data and target ontology.

• Are inherently more sophisticated than mappings for schema matching [Rahm & Bernstein 2001]
and ontology matching [Euzenat & Shvaiko 2007].

As a consequence:

• Management of VKG mappings is an essentially manual effort that is labor-intensive and
error-prone.
• Requires highly-skilled professionals [Spanos et al. 2012].
• Writing mappings is challenging in terms of semantics, correctness, and performance.

Designing and managing mappings is the most critical bottleneck
for the adoption of the VKG approach.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (65/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Who provides the mapping?

Writing mappings manually is a
time-consuming and error-prone task.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (66/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Who provides the mapping?

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (67/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Who provides the mapping?

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (68/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Designing VKG mappings
A good design of mappings in VKGs is critical in ensuring that:
• the resulting VKG specification captures correctly the domain semantics, and
• queries posed over a VKG instance can be answered efficiently.

In designing the mapping assertions, we should take into account the following:
• For each atom in the target part, the source query should be the simplest SQL query that

retrieves the data that is necessary to populate that atom.

• In particular, we should avoid unnecessary joins in the source query.

• We should combine two (or more) atoms in a single mapping assertion only if they require the
same source query.

• We need to pay attention to the form of the IRI-templates, to ensure that the “same” ontology
object retrieved through multiple mappings is constructed with the same IRI-template.

However, these observations in general are not sufficient to ensure a good mapping design.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (69/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Patterns in data sources

• In order to simplify the task of mapping design, it is convenient to identify whether the data
source satisfies certain common patterns.

• Each such data pattern can be captured in a sort of “standard” way through a specific form of
mapping assertions, combined with some specific form of ontology axiom.

• The presence of a pattern in a data source, and hence the applicability of the corresponding
standard encoding into mappings (and ontology axioms), is signaled by the presence of some
(combination of) constraints holding over the relational tables.

• Notice that such constraints might hold:
• either because they are explicitly declared in the database, and hence enforced by the DBMS,
• or because they are implied by the semantics of the domain, even though they might not be declared

explicitly in the database.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (70/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Looking at database design principles

In relational database design, well-established conceptual modeling principles and
methodologies are usually employed.
• The resulting schema should suitably reflects the application domain at hand.

• This design phase relies on semantically-rich representations such as ER diagrams.

• However, these representations, typically:
• get lost during deployment, since they are not conveyed together with the database itself, or
• quickly get outdated due to continuous adjustments triggered by changing requirements.

Key Observation

While the relational model may be semantically-poor with respect to ontological models, the original
semantically-rich design of the application domain leaves recognizable footprints that can be
converted into ontological mapping patterns.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (71/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Outline

1 Motivation and VKG Solution

2 VKG Components

3 Formal Semantics and Query Answering

4 Designing a VKG System
Ontology and Mapping Design
VKG Mapping Patterns
VKG Design Scenarios

5 Conclusions

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (71/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Elements characterizing a VKG mapping pattern

Therefore, in designing VKG mapping patterns, we draw an explicit and precise connection with
conceptual modeling practices found in DB design, while exploiting all of:

• the relational schema with its constraints

• the conceptual schema at the basis of the relational schema

• extensional data stored in the DB (when available)

• the domain knowledge that is encoded in ontology axioms

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (72/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Catalog of mapping patterns

To come up with a catalog of mapping patterns, we can rely on well-established methodologies and
patterns studied in:
• data management – e.g., W3C Direct Mapping Specification [Arenas et al. 2012] and extensions
• data analysis – e.g., algorithms for discovering dependencies, and
• conceptual modeling

The specification of each pattern includes:
• the three components of a VKG specification: DB schema, ontology, mapping between the two;
• the conceptual schema of the domain of interest;
• underlying data, when available.

Note that the patterns do not fix what is given as input and what is produced as output, but simply
describe how the different elements relate to each other.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (73/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Two major groups of mapping patterns

Schema-driven patterns

Are shaped by the structure of the DB schema and its explicit constraints.

Data-driven patterns
• Consider also constraints emerging from specific configurations of the data in the DB.
• For each schema-driven pattern, we identify a data-driven version:

The constraints over the schema are not explicitly specified, but hold in the data.
• We provide also data-driven patterns that do not have a schema-driven counterpart.

Some patterns come with views over the DB-schema:
• Views reveal structures over the DB-schema, when the pattern is applied.
• Views can be used to identify the applicability of further patterns.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (74/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Constraints on the data

When defining the mapping patterns, we consider the following types of constraints:

• Primary key constraint: denoted T(K,A), where K is a set of attributes that form the primary
key of relation T, and A are the remaining attributes of T.

• Key constraint: denoted uniqueT (K), where K is a set of attributes that form a key of the relation
T on which the attributes K are defined.

• Foreign key constraint: denoted T1[A] ⊆ T2[K], where A is a set of attributes of relation T1 and
K is a key (typically, the primary key) of relation T2. For convenience, we represent the constraint
T1[A] ⊆ T2[K] by drawing an arrow from A in the schema of T1 to K in the schema of T2, i.e.,

T1 (A,B) T2
(
K,A′

)

Note: We denote single attributes of a relational table using normal math font (e.g., A), while we use
boldface to indicate sets of attributes (e.g., A or K).

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (75/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Types of mapping patterns
We have defined several types of mapping patterns. We discuss here some significant ones:
• Entity (MpE)
• Relationship (MpR)
• Relationship with Identifier Alignment (MpRa)
• Relationship with Merging (MpRm)
• 1-1 Relationship with Merging (MpR11m)
• Entity with Weak Identification (MpEw)

• Reified Relationship (MpRR)
• Hierarchy (MpH)
• Hierarchy with Identifier Alignment (MpHa)
• Clustering Entity to Class (MpCE2C) /

Data Property / Object Property

We present each mapping pattern by specifying the following four components:
1 The constraints over the relational schema/data that make the patterns applicable.
2 A possible conceptual schema (specified as an Entity-Relationship diagram) that corresponds to

such constraints.
The elements that are directly affected by the pattern and that give rise to the mapping assertions are outlined in red.

3 The resulting mapping assertion(s) (given as source and target parts).
4 The ontology axioms that should hold.

Note: In the following, we make use of IRI-templates of the form “:E/{K}”, where we assume that
“:E/” is a prefix that is specific for the instances of a class CE.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (76/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Entity (MpE)

Relational schema and constraints:
TE(K,A) E

K A

Mapping assertion:
s : TE

t : :E/{K} rdf:type CE .
{ :E/{K} dA {A} . }A∈K∪A

Ontology axioms:
∃dA ⊑ CE

∃d−A ⊑ µ(τ(A))
CE ⊑ ∃dA


A∈K∪A

For each optional attribute A′, add an opt(A′) indication to the relational schema and drop the
corresponding axiom CE ⊑ ∃dA′ from the ontology.

For the application of the mapping pattern, we observe the following:
• The pattern considers a single table TE with primary key K and other relevant attributes A.
• The pattern captures how TE is mapped into a corresponding class CE.
• The primary key K of TE is used to construct the objects that are instances of CE, using a

template :E/{K} specific for CE.
• Each relevant attribute of TE is mapped to a data property of CE.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (77/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Entity (MpE) – Example

Consider a TClient table containing ssns of clients, together with name, dateOfBirth, and hobbies as
additional attributes.
TClient(ssn,name,dateOfBirth ,hobbies)

Mapping: TClient is mapped to a Client class using the attribute ssn to construct the IRIs for its
instances.
In addition, the ssn, name, and dateOfBirth attributes are used to populate in the object position the
three data properties ssn, name, and dob, respectively. The attribute hobbies is ignored.

mappingId MClient
source SELECT ssn, name, dateOfBirth FROM TClient

target :C/{ssn} rdf:type :Client ;

:ssn {ssn} ;

:name {name} ;

:dob {dateOfBirth} .

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (78/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Relationship (MpR) – Case of (0,n)–(0,n) cardinalities

Relational schema and constraints:
TE(KE,AE) TF(KF,AF)

TR(KRE,KRF)
E

KE AE

F

KF AF

R

Mapping assertion:
s : TR

t : :E/{KRE} pR :F/{KRF} .

Ontology axioms:
∃pR ⊑ CE

∃p−R ⊑ CF

For the application of the mapping pattern, we observe the following:
• This pattern considers three tables TR, TE, and TF.
• The primary key of TR is partitioned into two parts KRE and KRF that are foreign keys to TE and

TF, respectively.
• TR has no additional (relevant) attributes.
• The pattern captures how TR is mapped to an object property pR, using the two parts KRE and

KRF of the primary key to construct respectively the subject and the object of the triples in pR.
Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (79/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Relationship (MpR) – Example

An additional TAddress table in the client registry stores the addresses at which each client can be
reached, and such table has a foreign key to a table TLocation storing locations using attributes city
and street.
TClient(ssn,name,dateOfBirth ,hobbies)

TLocation(city,street)

TAddress(client,locCity,locStreet)

FK: TAddress[client] -> Tclient[ssn]

FK: TAddress[locCity,locStreet] -> TLocation[city,street]

Mapping: The TAddress table is mapped to an address object property, for which the ontology
asserts that the domain is the class Client and the range an additional class Location, corresponding
to the TLocation table.

mappingId MAddress
source SELECT client, locCity, locStreet FROM TAddress

target :C/{client} :address :L/{locCity}/{locStreet} .

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (80/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Relationship (MpR) – General case

Relational schema and constraints:
TE(KE,AE) TF(KF,AF)

TR(KRE,KRF) E

KE AE

F

KF AF

R

Mapping assertion:
s : TR

t : :E/{KRE} pR :F/{KRF} .

Ontology axioms:
∃pR ⊑ CE

∃p−R ⊑ CF

• In case of a (1, n) cardinality on role RE, the inclusion dependency TE[KE] ⊆ TR[KRE] holds in the
relational schema, and we add to the ontology the inclusion axiom CE ⊑ ∃pR.
Similarly for a cardinality (1, n) on role RF.
• In case of a (, 1) cardinality on role RE, the primary key for TR is restricted to the attributes KRE.

(Similarly for RF and KRF.) In case both roles have a (, 1) cardinality, either choice for the
primary key is made, and the remaining attributes form a non-primary key in the logical schema.
• In case of a (1, 1) cardinality on role RE, both modifications above apply, and the inclusion

dependency TE[KE] ⊆ TR[KRE] is actually a foreign key. (Similarly for role RF.)

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (81/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Relationship with Identifier Alignment (MpRa)
Relational schema and constraints:

TE(KE,AE) TF(KF,UF,AF)

TR(KRE,KRF) uniqueRF
(UF) E

KE AE

F

KF UF

AF

R

Mapping assertion:
s : TR 1KRF=UF TF

t : :E/{KRE} pR :F/{KF} .

Ontology axioms:
∃pR ⊑ CE

∃p−R ⊑ CF

For the application of the mapping pattern, we observe the following:
• Such pattern is a variation of pattern MpR, in which the foreign key in TR does not point to the

primary key KF of TF, but to an additional key UF.
• Since the instances of class CF corresponding to TF are constructed using the primary key KF of

TF (cf. pattern MpE), also the pairs that populate pR should refer in their object position to KF.
• Note that KF can only be retrieved by a join between TR and TF on the additional key UF.

Cardinality constraints are handled similarly to MpR, with the difference that now the constraints
involve KRF and UF. The case when both sets of attributes in TR require alignment is treated similarly.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (82/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Rel. with Identifier Alignment (MpRa) – Example

The primary key of the table TLocationCoord is now not given by the city and street, which are used
in the table TAddress that relates clients to their addresses, but is given by the latitude and longitude
of locations.
TClient(ssn,name,dateOfBirth ,hobbies)

TLocationCoord(latitude ,longitude,city,street) unique[TLocationCoord]: city,street

TAddress(client,locCity,locStreet)

FK: TAddress[client] -> Tclient[ssn]

FK: TAddress[locCity,locStreet] -> TLocationCoord[city,street]

Mapping: The TAddress table is mapped to an address object property, for which the ontology
asserts that the domain is the class Client and the range an additional class Location, corresponding
to the TLocationCoord table.

mappingId MAddressCoord
source SELECT client, latitude, longitude

FROM TAddress JOIN TLocationCoord ON locCity = city AND locStreet = street

target :C/{client} :address :LC/{latitude}/{longitude} .

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (83/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Relationship with Merging (MpRm)
Relational schema and constraints:

TF(KF,AF)

TE(KE,KEF,AE) E

KE AE

F

KF AF

R
(, 1)

Mapping assertion:
s : TE

t : :E/{KE} pEF :F/{KEF} .

Ontology axioms:
∃pEF ⊑ CE

∃p−EF ⊑ CF

For the application of the mapping pattern, we observe the following:
• Such pattern is characterized by a table TE in which the foreign key KEF to a table TF is disjoint

from its primary key KE.
• The table TE is mapped to an object property pEF, whose subject and object are derived

respectively from KE and KEF.

Cardinality constraints are handled similarly to MpR, with the catch that in the case of (0, 1) cardinality
on role RE, we have that KEF is nullable.
The alignment variant MpRma, where the foreign key KEF of TE references a non-primary
identifier of TF, is defined in the straightforward way.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (84/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Relationship with Merging (MpRm) – Example

The relationship between a client and its unique billing address has been merged into the TClient
table. The ontology defines a billingAddress object property, whose domain is the Client class and
whose range is the Location class.
TLocation(city,street)

TClient(ssn,name,dateOfBirth ,billCity ,billStreet ,hobbies)

FK: TClient[billCity ,billStreet] -> TLocation[city,street]

Mapping: The billing address information is extracted by a mapping from the TClient table to
billingAddress.

mappingId MBillingAddress
source SELECT ssn, billCity, billStreet FROM TCLient

target :C/{ssn} :billingAddress :L/{billCity}/{billStreet} .

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (85/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: 1-1 Relationship with Merging (MpR11m)

Relational schema and constraints:
TE(KE,AE,KF,AF) uniqueTE

(KF)

VR(KE,KF) = πKE ,KF (TE)

VE(KE,AE) = πKE ,AE (TE) VF(KF,AF) = πKF ,AF (TE) E

KE AE

F

KF AF

R
(1, 1) (1, 1)

Mapping assertion:
s : TE

t : :F/{KF} rdf:type CF .
{ :F/{KF} dA {A} . }A∈KF∪AF

:E/{KE} pR :F/{KF} .

Ontology axioms:
∃pR ≡ CE

∃p−R ≡ CF


∃dA ⊑ CF

∃d−A ⊑ µ(τ(A))
CF ⊑ ∃dA


A∈KF∪AF

For the application of the mapping pattern, we observe the following:
• The pattern could be applied when a table TE has a primary key KE and an additional key KF.
• Moreover, domain knowledge of the ontology indicates that objects with IRI :F/{KF} are relevant

in the domain, and that they have data properties that correspond to the attributes AF of TE.
• When this pattern is applied, the key KF and the attributes AF, can be projected out from TE,

resulting in a view VE to which further patterns can be applied, including MpR11m itself.
Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (86/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: 1-1 Relationship with Merging (MpR11m) – Example
A single table TUniversity, containing the information about universities, contains also information
about their rector. The given ontology contains both a University and a Rector class.
TUniversity(uname,numfaculties ,recssn,recname,recdob,salary)

unique[TUniversity]: recssn

Mapping: The attribute recssn in TUniversity, identifying the rector, is used to form the IRIs for the
instances of Rector, and the attributes recname and recdob, intuitively belonging to the rector, are
mapped to data properties that have as domain Rector (as opposed to University).

mappingId MUniversity
source SELECT uname, numfaculties FROM TUniversity

target :U/{uname} rdf:type :University ; :numfac {numfaculties} .

mappingId MRector
source SELECT recssn, recname, recdob FROM TUniversity

target :P/{recssn} rdf:type :Rector ;

:ssn {recssn} ; :name {recname} ; :dob {recdob} .

mappingId MhasRector
source SELECT uname, recssn FROM TUniversity

target :U/{uname} :hasRector :P/{recssn} .

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (87/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: 1-1 Relationship with Merging (MpR11m) – Notes

• Notice that to apply pattern MpR11m, domain knowledge is inherently required to determine to
which class the attributes should be associated.

• For example, assume that the table TUniversity contains an attribute for the salary of the rector.
Then, we have two possibilities:
• the salary is considered a property of the rector, e.g., if the salary is negotiated individually by the

rector.
• the salary is considered a property of the university, e.g., if the salary of the rector is determined by

some regulation of the university.

Distinguishing which of these two possibilities is the correct one, requires in-depth knowledge
about the domain.

• The necessary domain knowledge may also come from the ontology, e.g., if the data properties
corresponding to the attributes are already present in the ontology, and their domain has been
declared.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (88/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Entity with Weak Identification (MpEw)
Relational schema and constraints:

TF(KF,AF)

TE(KE,KEF,AE) E

AE KE

F

KF AF

R
(1, 1)

Mapping assertions:
s : TE

t : :E/{KE}/{KEF} rdf:type CE .
{ :E/{KE}/{KEF} dA {A} . }A∈KE∪AE

:E/{KE}/{KEF} pR :F/{KEF} .

Ontology axioms:
∃pR ≡ CE

∃p−R ⊑ CF


∃dA ⊑ CE

∃d−A ⊑ µ(τ(A))
CE ⊑ ∃dA


A∈KE∪AE

For the application of the mapping pattern, we observe the following:
• The data source contains a table TE with primary key KE ,KEF and additional attributes AE .
• Attributes KEF are a foreign key to an additional source table TF . They are not to be mapped to data properties (for class

CE), since they act as external identifier for table TE .
• The table TF has a (primary) key KF and may also contain additional attributes AF (considered when applying MpE to it).
• The ontology contains an object property pR corresponding to a relationship that has been merged into TE , and classes

CE and CF corresponding to TE and TF , respectively.
Cardinality constraints are handled similarly as for MpR. Optional attributes are handled similarly as for MpE.
The alignment variant MpWEa, where the foreign key references a non-primary identifier, is defined in the straightforward way.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (89/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Entity with Weak Identification (MpEw) – Example

We consider two tables Student and University, and we are given an ontology that contains classes
Student and University, connected through an object property enrollment.
TUniversity(uname,numfaculties)

TStudent(matrN,university,name)

FK: TStudent[university] -> TUniversity[uname]

Mapping: The attributes matrN and university in TStudent, identifying the student, are used to form
the IRIs for the instances of Student. These are put into correspondence with the University through
the object property enrollment.

mappingId MStudent
source SELECT matrN, name FROM TStudent

target :S/{university}/{matrN} rdf:type :Student ;

:matrN {matrN} ; :name {name} .

mappingId Menrollment
source SELECT matrN, university FROM TStudent

target :S/{university}/{matrN} :enrollment :U/{university} .

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (90/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Associating properties to a property

OWL 2 QL does not allow one to assign data properties to an object property.

Example

Consider again the actsIn object property that relates MovieActors to Movies.
We might want to model in the ontology:
• the role in which the actor played in the movie;
• the duration of the appearance;
• the payment received for playing in the movie;
• . . .

These are neither properties of an actor nor properties of a movie, but are properties related to the
relationship between MovieActor and Movie.

We can take into account such situations by transforming an object property into a class, so that we
can then attach the properties to the class.
This transformation is called reification, and follows a standard pattern.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (91/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Reification of a property

Consider a property P with domain C1 and range C2, and suppose we want to associate (object or
data) properties to P.

C1 C2
P

m1..n1m2..n2

Reification of a property P with domain C1 and range C2

1 Introduce a new class CP.

2 Introduce two new object properties, PC1, connecting CP to C1, and PC2, connecting CP to C2.

3 CP has a mandatory and functional participation both to PC1 and to PC2.

4 The cardinalities on P become cardinalities on P−C1 (i.e., on the inverse of PC1).

5 The cardinalities on P− become cardinalities on P−C2 (i.e., on the inverse of PC2).

C1 C2CP
PC1

m1..n11..1

PC2

m2..n2 1..1

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (92/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Reification of a property – Example
Consider the worksFor object property between the classes Employee and Project, expressing the
fact that an employee works for a project, where each employee can work for at most three projects,
and each project should have at least one employee working for it.

Employee Project
worksFor

0..31..*

Suppose that we want to model also the dates when the employee started and ended her work for the
project, and the number of person months she dedicated to that work. To do so, we need to reify the
worksFor data property.

We introduce a class Work, which is the reified counterpart of worksFor, and connect it to Employee
via a new object property workBy, and to Project via a new object property workFor.

Employee Project

Work
startDate: xsd:date
endDate: xsd:date
pm: xsd:integer

workBy

0..31..1
workFor

1..* 1..1

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (93/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Reified Relationship (MpRR) – Attribute case
Relational schema and constraints:

TE(KE,AE)

TR(KRE,KRF,AR)

TF(KF,AF)

E

KE AE

F

KF AF

R

AR

Mapping assertion:
s : TR

t : :R/{KRE}/{KRF} rdf:type CR .
{ :R/{KRE}/{KRF} dA {A} . }A∈KRE∪KRF∪AR

:R/{KRE}/{KRF} pRE :E/{KRE} .
:R/{KRE}/{KRF} pRF :F/{KRF} .

Ontology axioms:
∃pRE ⊑ CR ∃pRF ⊑ CR

∃p−RE ⊑ CE ∃p−RF ⊑ CF
∃dA ⊑ CR

∃d−A ⊑ µ(τ(A))
CR ⊑ ∃dA


A∈AR

For the application of the mapping pattern, we observe the following:
• The pattern applies to a table TR whose primary key is partitioned in (at least) two parts KRE and

KRF that are foreign keys to additional tables, and there are additional attributes AR in TR.
• Since TR corresponds to a conceptual element that has itself properties (corresponding to AR), to

represent it in the ontology we require a class CR whose instances have an IRI :R/{KRE}/{KRF}.
• The mapping ensures that each component of the relationship is represented by an object

property (pRE, pRF), and that the tuples instantiating them can all be derived from TR alone.
Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (94/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Reified Relationship (MpRR) – n-ary relationship case
Relational schema and constraints:

TG(KG,AG)

TR(KRE,KRF,KRG,AR)TE(KE,AE) TF(KF,AF)
E

KE AE

F

KF AFGKG AG

R

AR

Mapping assertion: KR := KRE ∪ KRF ∪ KRG
s : TR

t : :R/{KR} rdf:type CR .
{ :R/{KR} dA {A} . }A∈KR∪AR

:R/{KR} pRE :E/{KRE} .
:R/{KR} pRF :F/{KRF} . :R/{KR} pRG :G/{KRG} .

Ontology axioms:
∃pRE ⊑ CR ∃pRF ⊑ CR ∃pRG ⊑ CR

∃p−RE ⊑ CE ∃p−RF ⊑ CF ∃p−RG ⊑ CG
∃dA ⊑ CR

∃d−A ⊑ µ(τ(A))
CR ⊑ ∃dA


A∈AR

For the application of the mapping pattern, we observe the following:
• The pattern applies to a table TR whose primary key is partitioned in at least three parts KRE,

KRF, and KRG, that are foreign keys to three additional tables.
• Additional attributes AR might also be present in TR.
• Apart from the arity of the relationship, the pattern behaves analogously to MpRR for the

attribute case.
Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (95/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Reified Relationship (MpRR) – Example
Consider a table TExam containing information about university exams, (which involve a student, a
course, and a professor teaching that course), that has foreign keys towards three tables, namely
TStudent, TCourse, and TProfessor.
TExam(student,course,professor,grade)

TStudent(ssn,sname) FK: TExam[student] -> TStudent[ssn]

TCourse(cid,cname,credits) FK: TExam[course] -> TCourse[cid]

TProfessor(ssn,pname,level) FK: TExam[professor] -> TProfessor[ssn]

Mapping: This information is represented by a relationship that is inherently ternary. The ontology
should contain a class Exam corresponding to the reified relationship, connected via three object
properties to the classes Student, Course, and Professor. The mapping ensures that the class Exam
is instantiated with objects whose IRI is constructed from the identifiers of the component classes.

mappingId MExam
source SELECT student, course, professor , grade FROM TExam

target :E/{student}/{course}/{professor} rdf:type :Exam ;

:examOf :P/{student} ;

:examFor :C/{course} ;

:examBy :P/{professor} ;

:examGrade {grade} .

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (96/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Hierarchy (MpH)
Relational schema and constraints:

TE(KE,AE)

TF(KFE,AF)
F AF

E
KE

AE

Mapping assertions:
s : TF

t : :E/{KFE} rdf:type CF .
{ :E/{KFE} dA {A} . }A∈AF

Ontology axioms:

CF ⊑ CE


∃dA ⊑ CF

∃d−A ⊑ µ(τ(A))
CF ⊑ ∃dA


A∈AF

Optional attributes are handled as for MpE.

For the application of the mapping pattern, we observe the following:
• The pattern considers a table TF whose primary key is a foreign key to a table TE.
• Then, TF is mapped to a class CF in the ontology that is a sub-class of the class CE to which TE

is mapped.
• Hence, CF “inherits” the template :E/{·} of CE, so that the instances of the two classes are

“compatible”.
Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (97/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Hierarchy (MpH) – Example
Consider a table TPerson containing information about persons, and a table TStudent containing
information about students, which has a foreign key towards TPerson.
TPerson(ssn,name,dob)

TStudent(ssn,sid,credits) FK: TStudent[ssn] -> TPerson[ssn]

Mapping: The two tables TPerson and TStudent are mapped to two classes Person and Student,
respectively, each with data properties corresponding to the attributes of the table. Moreover, the
ontology will contain an axiom stating that Student is a sub-class of Person.

mappingId MPerson
source SELECT ssn, name, dob FROM TPerson

target :P/{ssn} rdf:type :Person ;

:name {name} ;

:dateOfBirth {dob} .

mappingId MStudent
source SELECT ssn, sid FROM TStudent

target :P/{ssn} rdf:type :Student ;

:studentId {sid} ;

:hasCredits {credits} .

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (98/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Hierarchy with Identifier Alignment (MpHa)
Relational schema and constraints:

TE(KE,AE)

TF(KF,UF,AF)

uniqueTF
(UF)

TE(KE,AE)

VF(KF,UF,AF) = TF

uniqueVF
(KF)

F
KF

AF

E
KE

AE

Mapping assertions:
s : TF

t : :E/{UF} rdf:type CF .

{ :E/{UF} dA {A} . }A∈KF∪AF

Ontology axioms:

CF ⊑ CE


∃dA ⊑ CF

∃d−A ⊑ µ(τ(A))
CF ⊑ ∃dA


A∈KF∪AF

For the application of the mapping pattern, we observe the following:
• Such pattern is like MpH, but the foreign key in TF is over a key UF that is not primary.
• The objects for CF have to be built out of UF, rather than out of its primary key KF.
• For this purpose, the pattern creates a view VF in which UF is the primary key, and the foreign

key relations are preserved.
Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (99/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Hierarchy with Indentifier Alignment (MpHa) – Example
Consider the tables TPerson and TStudent of the previous example, but assume now that the primary
key of TStudent is sid. Consider also an additional table TEnrolled, recording course enrollments.
TPerson(ssn,name,dob)

TStudent(sid,ssn,credits) FK: TStudent[ssn] -> TPerson[ssn] key[TStudent]: ssn

TEnrolled(student,course) FK: TEnrolled[student] -> TStudent[sid]

Mapping: By applying pattern MpHa, we identify the instances of Student by their ssn, and we create
a view VStudent(sid,ssn,credits). But now, considering this view instead of TStudent, in order
to map TEnrolled into an object property enrolledIn, we need to apply pattern MpRa rather than MpR.

mappingId MPerson
source SELECT ssn, name, dob FROM TPerson

target :P/{ssn} rdf:type :Person ; :name {name} ; :dateOfBirth {dob} .

mappingId MStudent
source SELECT sid, ssn, credits FROM TStudent

target :P/{ssn} rdf:type :Student ; :studentId {sid} ; :hasCredits {credits} .

mappingId MEnrolled
source SELECT ssn, course FROM TEnrolled JOIN TStudent ON student = sid

target :P/{ssn} :enrolledIn :C/{course} .

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (100/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Clustering Entity to Class (MpCE2C) – Equality case

Relational schema and constraints:
TE(K,A),
Attributes B ⊆ K ∪ A
partition table TE into sub-tables TEv

such that t ∈ TEv iff t[B] = v

{ VEv (K,A) = σB=v(TE) }v∈πB(TE)

E

K A Attributes B ⊆ K ∪ A
partition entity E into sub-entities Ev

such that o ∈ Ev iff B(o) = v

Mapping assertions:
{ s : σB=vTE

t : :E/{K} rdf:type Cv
E . }v∈πB(TE)

Ontology axioms:
{ Cv

E ⊑ CE }v∈πB(TE)

For the application of the mapping pattern, we observe the following:
• This pattern is characterized by a table TE corresponding to a class CE, and a derivation rule

defining sub-classes of CE according to the values for attributes B in TE.
• Accordingly, instances in TE can be mapped to ontology objects in the sub-classes Cv

E of CE.
• As for other patterns, this pattern produces views according to the possible values v of B.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (101/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Clustering Entity to Class (MpCE2C) – Example
Consider a table TStudent containing students with an attribute degree defining whether they are
enrolled in a BSc or MSc study course and ranging over ’B’ or ’M’.
TStudent(sid,name,dob,degree)

Mapping: The ontology defines a class Student with two subclasses BScStudent and MScStudent.
Pattern MpCE2C clusters the table according to the degree attribute, and instantiates the classes
BScStudent and MScStudent accordingly.

mappingId MStudent
source SELECT sid, name, dob FROM TStudent

target :S/{sid} rdf:type :Student ; :name {name} ; :dob {dateOfBirth} .

mappingId MBSc
source SELECT sid FROM TStudent WHERE degree = ’B’

target :S/{sid} rdf:type :BScStudent .

mappingId MMSc
source SELECT sid FROM TStudent WHERE degree = ’M’

target :S/{sid} rdf:type :MScStudent .

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (102/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Further mapping patterns

• Similarly to the previous pattern, which clusters instances of a class into different subclasses, we
can consider patterns that generate a cluster of data properties, or a cluster of object properties,
according to different criteria that can be applied to the source data.

• In order to understand when such patterns can be applied, and then define the corresponding
mapping assertions and the expected underlying ontology axioms, we can proceed in a way
similar to the case of a cluster of (sub)classes.

• More in general, we might conceive also additional patterns that involve more complex
operations or queries over the data.

• Also, in any (sufficiently complex) real-world integration scenario, many cases will occur for
which none of the specified pattern applies.

• Therefore, based on (the knowledge that the designer has about) the domain semantics, and the
constructs that are available in the ontology, in general also ad-hoc mappings need to be defined.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (103/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Additional considerations on IRI-templates

• As we have seen, it is a good practice to include in the IRI-template a prefix that depends on the
kind of object (i.e., the class).

• In the case of ISA hierarchies, one has to pay attention on whether to use the same or different
templates for the various classes in the hierarchy:
• Using the same template allows for specifying joins across the various classes of the hierarchy.
• Using different templates allows for differentiating the different classes and for applying stricter pruning

of queries, which helps in query optimization.

• One has also to consider whether to include info about the data source as part of the
IRI-template or not:
• In general, this is not done, which makes the data sources transparent to the user who queries.
• By including the data source in the IRI-template, such information is recorded in the created objects.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (104/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Outline

1 Motivation and VKG Solution

2 VKG Components

3 Formal Semantics and Query Answering

4 Designing a VKG System
Ontology and Mapping Design
VKG Mapping Patterns
VKG Design Scenarios

5 Conclusions

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (104/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Design scenarios for VKG mapping patterns

Depending on what information is available, we can consider different design scenarios where the
patterns can be applied:

1 Debugging of a VKG specification that is already in place.

2 Conceptual schema reverse engineering for a DB that represents the domain of interest by
using a given full VKG specification.

3 Mapping bootstrapping for a given DB and ontology that miss the mappings relating them.

4 Ontology + mapping bootstrapping from a given DB with constraints, and possibly a
conceptual schema.

5 VKG bootstrapping, where the goal is to set up a full VKG specification from a conceptual
schema of the domain.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (105/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Automating the mapping design process

• In a complex real-world scenario, understanding the domain semantics, the semantics of the
data sources, and how the sources have to be related to the global schema/ontology can be
rather resource intensive and therefore costly.

• Currently, there are no tools that completely automate this process, and it is unlikely that a
completely automated solution is possible at all.

• However, there are tools that provide automated support for the (already difficult) task of
understanding which elements in one schema (e.g., a source) can correspond to which elements
of another schema (e.g., the global schema). This task is called schema matching.

• Based on a proposed match between elements, mapping patterns can provide valuable
indications on how to convert the match into an actual mapping, i.e., how to define the (SQL)
queries that correctly relate the semantics of the sources to that of the ontology.

• Also, mapping patterns can be automatically discovered, either by considering the constraints on
the data sources, or, more interestingly, derive the constraints from the actual data, even when
they are not defined over the sources at the schema level.

• Work in this direction is ongoing.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (106/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

MPBoot mapping bootstrapper

We are currently developing the MPBoot mapping bootstrapper, that relies on mapping patterns:

• Current version supports the Direct Mapping W3C Specification

• Enriched with various configuration options:
• selection of elements (tables, attributes) to actually map
• renaming of elements
• treatment of null values in tables
• treatment of tables without primary keys

• Partial support for schema-driven mapping patterns:
• generation of domain and range assertions for properties (Schema Relationship Pattern)
• generation of class and property hierarchies (Schema Hierarchy Pattern)

• Extension to fully support schema driven patterns is ongoing.

• Extension to consider also data driven patterns is starting now [PhD of Marco Di Panfilo].

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (107/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Outline

1 Motivation and VKG Solution

2 VKG Components

3 Formal Semantics and Query Answering

4 Designing a VKG System

5 Conclusions

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (107/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Summary

• VKGs are by now a mature technology to address the challenges in data access and integration.

• They rely on W3C standards and on supporting APIs and libraries.

• The technology is general purpose and applied in many different scenarios, but it can be tailored
towards specific domains by relying on standard ontologies.

• Performance and scalability w.r.t. larger datasets and larger and more complex ontologies, is still
a key challenge that is addressed by various kinds of optimizations in the query processing
engine.

• The design of VKG-based solutions, notably the mappings, is a major bottleneck that requires a
principled approach and supporting methodologies ; Mapping patterns

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (108/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

The Ontopic spinoff of unibz

https://ontopic.ai/

Funded in April 2019 as the first spin-off of the Free University of Bozen-Bolzano.

• Ontopic Studio
• Ensures scalability, reliability, and cost-efficiency at design and runtime of VKG solutions.
• Strong focus on usability

• Ontopic Server
• OBDA Server functionalities
• Deployment of SPARQL endpoints
• Deployment of JDBC functionality over VKG

• Technical services
• Technical support for Ontop and Ontopic Studio
• Customized developments

• Consulting on adoption of VKG-based solutions for data access and integration
Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (109/110)

https://ontopic.ai/

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Ongoing and future work
• Accessing alternative types of data:

• temporal data [C., Okulmus, et al. 2023, AMW]
• noSQL, tree, and graph structured data [Botoeva et al. 2019]
• raster data and geo-spatial data [PhD by Arka Ghosh]
• Web APIs [PhD by Albulen Pano]

Ongoing OnTeGra project with TU Vienna and Virtual Vehicle (Graz).

• Ontology-based federation, for accessing multiple, heterogeneous data sources [Gu et al. 2022,
IJCKG]

• Privacy issues [Cima et al. 2020; Bonatti et al. 2022], [PhD by Divya Baura]

• Ontology-based update [PhD by Romuald Wandji]

• (Semi-)automatic extraction/learning of ontology axioms and mappings [C., Gal, et al. 2021, CAiSE]

• For complex real-world scenarios, VKG-design requires also tool support.

See, e.g., Studio.
Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (110/110)

References References

A great thank you to our collaborators

Elena
Botoeva

Julien
Corman

Linfang
Ding

Zhenzhen
Gu

Elem
Güzel

Marco
Montali

Alessandro
Mosca

Mariano
Rodriguez

Muro
Guohui

Xiao

Avigdor
Gal

Roee
Shraga

Roman
Kontchakov

Vladislav
Ryzhikov

Michael
Zakharyaschev

Benjamin
Cogrel

Sarah
Komla Ebri

Giuseppe
De Giacomo

Domenico
Lembo

Maurizio
Lenzerini

Antonella
Poggi

Riccardo
Rosati

Technion
Haifa

Ontopic
s.r.l.

Birkbeck
College
London

U. Roma
“La

Sapienza”

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (111/110)

Thank you!
diego.calvanese@unibz.it
davide.lanti@unibz.it

• Ontop website: https://ontop-vkg.org/
• Github: https://github.com/ontop/ontop/
• Facebook: https://www.facebook.com/obdaontop/
• Twitter: @ontop4obda
• Ontopic website: https://ontopic.ai/

https://ontop-vkg.org/
https://github.com/ontop/ontop/
https://www.facebook.com/obdaontop/
https://ontopic.ai/

References References

References I

[1] Guohui Xiao, Diego C., Roman Kontchakov, Domenico Lembo, Antonella Poggi,
Riccardo Rosati & Michael Zakharyaschev. “Ontology-Based Data Access: A Survey”. In: Proc.
of the 27th Int. Joint Conf. on Artificial Intelligence (IJCAI). IJCAI Org., 2018, pp. 5511–5519.
doi: 10.24963/ijcai.2018/777.

[2] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue & Carsten Lutz.
OWL 2 Web Ontology Language Profiles (Second Edition). W3C Recommendation. Available
at http://www.w3.org/TR/owl2-profiles/. World Wide Web Consortium, Dec. 2012.

[3] Franz Baader, Diego C., Deborah McGuinness, Daniele Nardi & Peter F. Patel-Schneider, eds.
The Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press, 2003.

[4] Maurizio Lenzerini & Paolo Nobili. “On the Satisfiability of Dependency Constraints in
Entity-Relationship Schemata”. In: Information Systems 15.4 (1990), pp. 453–461.

[5] Sonia Bergamaschi & Claudio Sartori. “On Taxonomic Reasoning in Conceptual Design”. In:
ACM Trans. on Database Systems 17.3 (1992), pp. 385–422.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (113/110)

https://doi.org/10.24963/ijcai.2018/777
http://www.w3.org/TR/owl2-profiles/

References References

References II

[6] Alexander Borgida. “Description Logics in Data Management”. In: IEEE Trans. on Knowledge
and Data Engineering 7.5 (1995), pp. 671–682.

[7] Diego C., Maurizio Lenzerini & Daniele Nardi. “Unifying Class-Based Representation
Formalisms”. In: J. of Artificial Intelligence Research 11 (1999), pp. 199–240.

[8] Alexander Borgida & Ronald J. Brachman. “Conceptual Modeling with Description Logics”. In:
The Description Logic Handbook: Theory, Implementation and Applications. Ed. by
Franz Baader, Diego C., Deborah McGuinness, Daniele Nardi & Peter F. Patel-Schneider.
Cambridge University Press, 2003. Chap. 10, pp. 349–372.

[9] Daniela Berardi, Diego C. & Giuseppe De Giacomo. “Reasoning on UML Class Diagrams”. In:
Artificial Intelligence 168.1–2 (2005), pp. 70–118.

[10] Anna Queralt, Alessandro Artale, Diego C. & Ernest Teniente. “OCL-Lite: Finite Reasoning on
UML/OCL Conceptual Schemas”. In: Data and Knowledge Engineering 73 (2012), pp. 1–22.

[11] Diego C., Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini & Riccardo Rosati.
“Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite
Family”. In: J. of Automated Reasoning 39.3 (2007), pp. 385–429.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (114/110)

References References

References III

[12] Antonella Poggi, Domenico Lembo, Diego C., Giuseppe De Giacomo, Maurizio Lenzerini &
Riccardo Rosati. “Linking Data to Ontologies”. In: J. on Data Semantics 10 (2008),
pp. 133–173. doi: 10.1007/978-3-540-77688-8_5.

[13] Diego C., Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide L., Martin Rezk,
Mariano Rodriguez-Muro & Guohui Xiao. “Ontop: Answering SPARQL Queries over Relational
Databases”. In: Semantic Web J. 8.3 (2017), pp. 471–487. doi: 10.3233/SW-160217.

[14] Nicola Guarino & Christopher A. Welty. “An Overview of OntoClean”. In: Handbook on
Ontologies. Ed. by Steffen Staab & Rudi Studer. International Handbooks on Information
Systems. Springer, 2009, pp. 201–220. doi: 10.1007/978-3-540-92673-3_9.

[15] Maurizio Lenzerini. “Data Integration: A Theoretical Perspective.”. In: Proc. of the 21st ACM
Symp. on Principles of Database Systems (PODS). 2002, pp. 233–246. doi:
10.1145/543613.543644.

[16] Erhard Rahm & Philip A. Bernstein. “A Survey of Approaches to Automatic Schema Matching”.
In: Very Large Database J. 10.4 (2001), pp. 334–350.

[17] Jérôme Euzenat & Pavel Shvaiko. Ontology Matching. Springer, 2007.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (115/110)

https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.3233/SW-160217
https://doi.org/10.1007/978-3-540-92673-3_9
https://doi.org/10.1145/543613.543644

References References

References IV

[18] Dimitrios-Emmanuel Spanos, Periklis Stavrou & Nikolas Mitrou. “Bringing Relational Databases
into the Semantic Web: A Survey”. In: Semantic Web J. 3.2 (2012), pp. 169–209.

[19] Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux & Juan Sequeda. A Direct Mapping
of Relational Data to RDF. W3C Recommendation. Available at
http://www.w3.org/TR/rdb-direct-mapping/. World Wide Web Consortium, Sept. 2012.

[20] Diego C., Cem Okulmus, Magdalena Ortiz & Mantas Simkus. “On the Way to Temporal OBDA
Systems”. In: Proc. of the 15th Alberto Mendelzon Int. Workshop on Foundations of Data
Management (AMW). Vol. 3409. CEUR Workshop Proceedings. CEUR-WS.org, 2023.

[21] Elena Botoeva, Diego C., Benjamin Cogrel, Julien Corman & Guohui Xiao. “Ontology-based
Data Access – Beyond Relational Sources”. In: Intelligenza Artificiale 13.1 (2019), pp. 21–36.
doi: 10.3233/IA-190023.

[22] Zhenzhen Gu, Davide Lanti, Alessandro Mosca, Guohui Xiao, Jing Xiong & Diego C.
“Ontology-based Data Federation”. In: Proc. of the 11th Int. Joint Conf. on Knowledge Graphs
(IJCKG). ACM, 2022, pp. 10–19. doi: 10.1145/3579051.3579070.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (116/110)

http://www.w3.org/TR/rdb-direct-mapping/
https://doi.org/10.3233/IA-190023
https://doi.org/10.1145/3579051.3579070

References References

References V

[23] Gianluca Cima, Domenico Lembo, Lorenzo Marconi, Riccardo Rosati & Domenico Fabio Savo.
“Controlled Query Evaluation in Ontology-Based Data Access”. In: Proc. of the 19th Int.
Semantic Web Conf. (ISWC). Vol. 12506. Lecture Notes in Computer Science. Springer, 2020,
pp. 128–146. doi: 10.1007/978-3-030-62419-4_8.

[24] Piero A. Bonatti, Gianluca Cima, Domenico Lembo, Lorenzo Marconi, Riccardo Rosati,
Luigi Sauro & Domenico Fabio Savo. “Controlled Query Evaluation in OWL 2 QL: A “Longest
Honeymoon” Approach”. In: Proc. of the 21st Int. Semantic Web Conf. (ISWC). Vol. 13489.
Lecture Notes in Computer Science. Springer, 2022, pp. 428–444. doi:
10.1007/978-3-031-19433-7_25.

[25] Diego C., Avigdor Gal, Naor Haba, Davide Lanti, Marco Montali, Alessandro Mosca &
Roee Shraga. “ADaMaP: Automatic Alignment of Relational Data Sources using Mapping
Patterns”. In: Proc. of the 33rd Int. Conf. on Advanced Information Systems Engineering
(CAiSE). Vol. 12751. Lecture Notes in Computer Science. Springer, 2021, pp. 193–209. doi:
10.1007/978-3-030-79382-1_12.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR – 13/02/2025 (117/110)

https://doi.org/10.1007/978-3-030-62419-4_8
https://doi.org/10.1007/978-3-031-19433-7_25
https://doi.org/10.1007/978-3-030-79382-1_12

	Motivation and VKG Solution
	VKG Components
	Backbone: RDF
	Representing Ontologies in OWL2QL
	Query Language – SPARQL
	Mapping an Ontology to a Relational Database

	Formal Semantics and Query Answering
	Designing a VKG System
	Ontology and Mapping Design
	VKG Mapping Patterns
	VKG Design Scenarios

	Conclusions
	Appendix
	References
	

	References

	0.EndRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.EndLeft:
	anm0:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

