
Bridging DLs and SHACL Validation
A DL perspective

Magdalena Ortiz

TU Wien
Joint work with Anouk Oudshoorn, Mantas Šimkus, Shqiponja Ahmetaj

Table of contents

1. Introduction to Description Logics

2. DLs, OWA and the Real World

3. Introduction to SHACL

Recursion in SHACL

4. Validating SHACL with Ontologies

Semantics of SHACL w.r.t. Ontologies

Validation via Rewriting

1

Introduction to Description Logics

Description Logics (DLs)

• Family of logics well-suited for describing structured knowledge
through concepts (classes) and roles (relationships)

• Decidable fragments of first order logic (with a funny∗ syntax)

AfricanCountry ⊑ Country
Country ⊑ ∃ hasCapital.City

City ⊑ ∃ locatedIn.Country
City ⊑ ≤ 1 locatedIn.Country

AfricanCountry ≡ Country ⊓ ∃locatedIn.{Africa}
hasCapital− ⊑ locatedIn

AfricanCountry(SouthAfrica), Country(Botswana), locatedIn(Botswana, Africa)

• DL knowledge base = TBox (axioms) + ABox (data)

* Yes, it is an acquired taste.

2

Description Logics (DLs)

• Family of logics well-suited for describing structured knowledge
through concepts (classes) and roles (relationships)

• Decidable fragments of first order logic (with a funny∗ syntax)

AfricanCountry ⊑ Country
Country ⊑ ∃ hasCapital.City

City ⊑ ∃ locatedIn.Country
City ⊑ ≤ 1 locatedIn.Country

AfricanCountry ≡ Country ⊓ ∃locatedIn.{Africa}
hasCapital− ⊑ locatedIn

AfricanCountry(SouthAfrica), Country(Botswana), locatedIn(Botswana, Africa)

• DL knowledge base = TBox (axioms) + ABox (data)

* Yes, it is an acquired taste.

2

Description Logics (DLs)

• Family of logics well-suited for describing structured knowledge
through concepts (classes) and roles (relationships)

• Decidable fragments of first order logic (with a funny∗ syntax)

AfricanCountry ⊑ Country
Country ⊑ ∃ hasCapital.City

City ⊑ ∃ locatedIn.Country
City ⊑ ≤ 1 locatedIn.Country

AfricanCountry ≡ Country ⊓ ∃locatedIn.{Africa}
hasCapital− ⊑ locatedIn

AfricanCountry(SouthAfrica), Country(Botswana), locatedIn(Botswana, Africa)

• DL knowledge base = TBox (axioms) + ABox (data)

* Yes, it is an acquired taste. 2

DLs as FOL Fragments

• guarded quantification, no explicit variables, function-free fragments

• mostly contained in FO2 or C2

KBs are theories with two types of formulas:

• ABox: data, facts B(c),B(d), r(c,d), r2(d, e) . . .

• TBox: axioms, universal formulas

A ⊓ B ⊑ C ∀x A(x) ∧ B(x)→ C(x)
A ⊑ ∃r.B ∀x A(x)→ ∃y r(x, y) ∧ B(y)
C ⊑ ∀r.{a} ∀x, y C(x) ∧ r(x, y)→ y = a
r ⊑ s ∀x, y r(x, y)→ s(x, y)

3

DLs: a toolbox of Computational Logics

DLs are a toolbox:

• different constructors combine into many DLs
• decidable fragments of standard FOL
• choice of the right logic

• taking into account the computational cost

DL-Lite EL ALC SHOIQ · · ·
AfricanCountry ⊑ Country ✓ ✓ ✓ ✓ ✓

Country ⊑ ∀hasCapital.City ✓ ✓ ✓
Country ⊑ ¬City ✓ ✓ ✓ ✓ ✓

City ⊓ ∃locIn.AfrCntr ⊑ AfricanCity ✓ ✓ ✓ ✓
SouthAfrica ⊑ ∃locatedIn.{Africa} ✓
hasCapital− ⊑ locatedIn ✓ ✓ ✓

trans(locatedIn) ✓ ✓

4

DLs, OWA and the Real World

What are DLs good for?

What have we achieved in four decades?

• A rich family of logics to describe and reason about graph
shaped data

• Good understanding of expressiveness vs. complexity trade-off
• Boundaries of decidability
• Fragments, safe combinations
• A whole arsenal of algorithmic techniques
• Efficient reasoners
• …

5

The classic DL Setting

• Data as a labeled graph (ABox)
• Background knowledge in an ontology or TBox

Models as in classical predicate logic

• any structure that satisfies the theory
• for us: any extension of the ABox that satisfies the TBox

6

The classic DL Setting

• Data as a labeled graph (ABox)
• Background knowledge in an ontology or TBox

Models as in classical predicate logic

• any structure that satisfies the theory
• for us: any extension of the ABox that satisfies the TBox

6

DL KB Examples

VeggiePizza(margherita) hasTopping(margherita,mozzarella)

VeggiePizza ⊑ Pizza
Pizza ⊑≥2 hasTopping.⊤

7

DL KB Examples

VeggiePizza(margherita) hasTopping(margherita,mozzarella)

VeggiePizza ⊑ Pizza
Pizza ⊑≥2 hasTopping.⊤

7

Models and DL Reasoning

Models : any extension of the ABox that satisfies the TBox

Typically, reason over all models, or similarly, model existence

• Logical entailment: subsumption, instance checking, query
answering

• consistency, …

In practice, (too) many models!

• costly reasoning
• some are unintended!
• sometimes misused or misunderstood

8

Models and DL Reasoning

Models : any extension of the ABox that satisfies the TBox

Typically, reason over all models, or similarly, model existence

• Logical entailment: subsumption, instance checking, query
answering

• consistency, …

In practice, (too) many models!

• costly reasoning
• some are unintended!
• sometimes misused or misunderstood

8

DL Reasoning Examples

Pizza(margherita)
hasTopping(margherita,mozzarella) VeggieTopping(mozzarella)
hasTopping(margherita, tomato) VeggieTopping(tomato)

Pizza ⊓ ∀hasTopping.VeggieTopping ⊑ VeggiePizza

|= VeggiePizza(margherita) ?

9

Wrong expectations

10

Wrong expectations

Attempts to use DLs as constraint languages to describe data!

11

Constraints for Graph Data

SHACL https://www.w3.org/TR/shacl/
• SHApe Constraint Language
• W3C standard since 2017
• For RDF data

DL syntax with constraint semantics

12

https://www.w3.org/TR/shacl/

Constraints for Graph Data

SHACL https://www.w3.org/TR/shacl/
• SHApe Constraint Language
• W3C standard since 2017
• For RDF data

DL syntax with constraint semantics

12

https://www.w3.org/TR/shacl/

Introduction to SHACL

Basic SHACL Syntax

Vocabulary:

• set of property names P (aka roles)
• set of class names C (aka concepts)
• set of node names N (aka individuals)

We define shape expressions φ:

φ ::= A | ⊤ | {a} | ¬φ | φ ∧ φ |≥n E.φ | E = E

where A ∈ C, a ∈ I, n ≥ 0, and E is a path expression

E ::= p | p− | E ∪ E | E ◦ E | E∗

with p ∈ P.

As usual, we can express

φ1 ∨ φ2 ∃E.φ ∀E.φ ≤n−1 E.φ

13

Example Shape Expressions

Pizza∧∃hasTopping.{mozzarella}∧∀hasTopping.Vegetarian

Pizza∧ ≥2 hasTopping.({aubergine}∨{onion}∨{artichoke})

14

SHACL Validation - basics

Input:

1. A data graph G
2. A shape expression φ

3. A set of target nodes a1, . . . an

The target nodes may be e.g., nodes in a class or complex query

Question: Does G validate φ at each ai?
• View the data graph as an interpretation

• Semantics of connectives in shape expressions as usual
• Is ai in the extension of φ?, i.e., is G a model of ai : φ?

Feasible in PTime

• Model checking is typically easy!

Satisfiability and containment of SHACL constraints are undecidable!

15

SHACL Validation - basics

Input:

1. A data graph G
2. A shape expression φ

3. A set of target nodes a1, . . . an
The target nodes may be e.g., nodes in a class or complex query

Question: Does G validate φ at each ai?
• View the data graph as an interpretation

• Semantics of connectives in shape expressions as usual
• Is ai in the extension of φ?, i.e., is G a model of ai : φ?

Feasible in PTime

• Model checking is typically easy!

Satisfiability and containment of SHACL constraints are undecidable!

15

SHACL Validation - basics

Input:

1. A data graph G
2. A shape expression φ

3. A set of target nodes a1, . . . an
The target nodes may be e.g., nodes in a class or complex query

Question: Does G validate φ at each ai?
• View the data graph as an interpretation

• Semantics of connectives in shape expressions as usual
• Is ai in the extension of φ?, i.e., is G a model of ai : φ?

Feasible in PTime

• Model checking is typically easy!

Satisfiability and containment of SHACL constraints are undecidable!

15

SHACL Validation - basics

Input:

1. A data graph G
2. A shape expression φ

3. A set of target nodes a1, . . . an
The target nodes may be e.g., nodes in a class or complex query

Question: Does G validate φ at each ai?
• View the data graph as an interpretation

• Semantics of connectives in shape expressions as usual
• Is ai in the extension of φ?, i.e., is G a model of ai : φ?

Feasible in PTime

• Model checking is typically easy!

Satisfiability and containment of SHACL constraints are undecidable!

15

SHACL Validation - basics

Input:

1. A data graph G
2. A shape expression φ

3. A set of target nodes a1, . . . an
The target nodes may be e.g., nodes in a class or complex query

Question: Does G validate φ at each ai?
• View the data graph as an interpretation

• Semantics of connectives in shape expressions as usual
• Is ai in the extension of φ?, i.e., is G a model of ai : φ?

Feasible in PTime

• Model checking is typically easy!

Satisfiability and containment of SHACL constraints are undecidable!
15

Validation on an Example

Given the graph:

pizza_margherita
Pizza

mozzarella
Vegetarian

tomato
Vegetarian

basil
Vegetarian

hasTopping hasTopping hasTopping

This shape expression validates for the target node margherita:

Pizza ∧ ∀hasTopping.Vegetarian

16

Shape names in SHACL

The SHACL vocabulary has more:

• set of property names P (aka roles)
• set of node names N (aka individuals)
• set of class names C (aka concepts)
• set of shape names S (similar to concepts)

In SHACL constraints, we assign shape expressions to shape names

s← φ

Targets can then be given as sets of shape atoms

s1(a1), . . . , sn(an)

A shapes graph contains constraints C and targets T

17

Shape names in SHACL

The SHACL vocabulary has more:

• set of property names P (aka roles)
• set of node names N (aka individuals)
• set of class names C (aka concepts)
• set of shape names S (similar to concepts)

In SHACL constraints, we assign shape expressions to shape names

s← φ

Targets can then be given as sets of shape atoms

s1(a1), . . . , sn(an)

A shapes graph contains constraints C and targets T

17

Shape names in SHACL

The SHACL vocabulary has more:

• set of property names P (aka roles)
• set of node names N (aka individuals)
• set of class names C (aka concepts)
• set of shape names S (similar to concepts)

In SHACL constraints, we assign shape expressions to shape names

s← φ

Targets can then be given as sets of shape atoms

s1(a1), . . . , sn(an)

A shapes graph contains constraints C and targets T
17

Recursion in SHACL

The SHACL specification allows shape names in shape expressions:

φ ::= s | A | ⊤ | {a} | ¬φ | φ ∧ φ |≥n E.φ | E = E

Pizza← ≥2 hasTopping.⊤,
VeggiePizza← Pizza ∧ ∀hasTopping.VeggieTopping,

VeggieTopping← {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke}

Person← ∃hasParent.Person

18

Recursion in SHACL

The SHACL specification allows shape names in shape expressions:

φ ::= s | A | ⊤ | {a} | ¬φ | φ ∧ φ |≥n E.φ | E = E

Pizza← ≥2 hasTopping.⊤,
VeggiePizza← Pizza ∧ ∀hasTopping.VeggieTopping,

VeggieTopping← {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke}

Person← ∃hasParent.Person

18

Validation of Recursive SHACL

We assume each s occurs in only one constraint head:

s← φ1 ∨ · · · ∨ φn

We now need a shape assignment I that assigns a set of nodes sI to
each shape name I .

Validation of (C, T) consists on finding an assignment I such that:

• sI = φI for each constraint s← φ in C
• a ∈ sI for every target s(a) in T

19

Validation of Recursive SHACL

We assume each s occurs in only one constraint head:

s← φ1 ∨ · · · ∨ φn

We now need a shape assignment I that assigns a set of nodes sI to
each shape name I .

Validation of (C, T) consists on finding an assignment I such that:

• sI = φI for each constraint s← φ in C
• a ∈ sI for every target s(a) in T

19

Back to our Example

pizza_margherita

mozzarella tomato basil

hasTopping hasTopping hasTopping

Pizza← ≥2 hasTopping.⊤,
VeggiePizza← Pizza ∧ ∀hasTopping.VeggieTopping,

VeggieTopping← {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke}

20

Semantics of recursive SHACL

Validation of (C, T) consists on finding an assignment I such that:

• sI = φI for each constraint s← φ in C
• a ∈ sI for every target s(a) in T

Satisfiability in DLs where:

• property names P and node names N are closed
• shape names S are open

Constraints as concept definitions s ≡ φ, targets as concept assertions s(a)

Finding an assignment I
• makes satisfiability coNP hard
• are all assignments equally good?

21

Semantics of recursive SHACL

Validation of (C, T) consists on finding an assignment I such that:

• sI = φI for each constraint s← φ in C
• a ∈ sI for every target s(a) in T

Satisfiability in DLs where:

• property names P and node names N are closed
• shape names S are open

Constraints as concept definitions s ≡ φ, targets as concept assertions s(a)

Finding an assignment I
• makes satisfiability coNP hard
• are all assignments equally good?

21

Semantics of recursive SHACL

Validation of (C, T) consists on finding an assignment I such that:

• sI = φI for each constraint s← φ in C
• a ∈ sI for every target s(a) in T

Satisfiability in DLs where:

• property names P and node names N are closed
• shape names S are open

Constraints as concept definitions s ≡ φ, targets as concept assertions s(a)

Finding an assignment I
• makes satisfiability coNP hard
• are all assignments equally good?

21

Validation in Recursive SHACL

Director← ∃creatorOf.Movie
Movie← ∃creatorOf−

.Director

Shakespeare Macbeth
creatorOf

We can validate Director(Shakespeare) !?!

22

Validation in Recursive SHACL

Director← ∃creatorOf.Movie
Movie← ∃creatorOf−

.Director

Shakespeare Macbeth
creatorOf

We can validate Director(Shakespeare) !?!

22

Validation in Recursive SHACL

Director← ∃creatorOf.Movie
Movie← ∃creatorOf−

.Director

Shakespeare Macbeth
creatorOf

We can validate Director(Shakespeare) !?!

22

Validation in Recursive SHACL

certifiedNode← ∃granted.Certifate ∨ ∃approvedBy.certifiedNode

node_1 node_2
approvedBy

approvedBy

We can validate certifiedNode(node_1)

23

Validation in Recursive SHACL

certifiedNode← ∃granted.Certifate ∨ ∃approvedBy.certifiedNode

node_1 node_2
approvedBy

approvedBy

We can validate certifiedNode(node_1)

23

Validation in Recursive SHACL

certifiedNode← ∃granted.Certifate ∨ ∃approvedBy.certifiedNode

node_1 node_2
approvedBy

approvedBy

We can validate certifiedNode(node_1)

23

Refining the Semantics of Recursive SHACL

• Supported semantics: any shape assignment
• Other semantics choose well-founded assignments

DLs in 1990s
descriptive vs. least fixpoint semantics for terminological cycles

LPs in 1990s
Logic Programs with negation

SHACL Recommendation, §3.4.3

24

Refining the Semantics of Recursive SHACL

• Supported semantics: any shape assignment
• Other semantics choose well-founded assignments

DLs in 1990s
descriptive vs. least fixpoint semantics for terminological cycles

LPs in 1990s
Logic Programs with negation

SHACL Recommendation, §3.4.3

24

Refining the Semantics of Recursive SHACL

• Supported semantics: any shape assignment
• Other semantics choose well-founded assignments

DLs in 1990s
descriptive vs. least fixpoint semantics for terminological cycles

LPs in 1990s
Logic Programs with negation

SHACL Recommendation, §3.4.3

24

Refining the Semantics of Recursive SHACL

• Supported semantics: any shape assignment
• Other semantics choose well-founded assignments

DLs in 1990s
descriptive vs. least fixpoint semantics for terminological cycles

LPs in 1990s
Logic Programs with negation

SHACL Recommendation, §3.4.3

24

Giving Semantics to Recursive SHACL

• Stable model semantics as in ASP

married← ¬single single← ¬married

Two stable models: {married}, {single}

• minimal models of the Gelfond-Lifschitz reduct
• alternative level-wise definition for SHACL
• NP-complete validation

• Well-founded semantics are a 3-valued

married← ¬single single← ¬married

Both married and single undefined

• approximation of stable models
• Polynomial validation
• inconsistency tolerant

25

Giving Semantics to Recursive SHACL

• Stable model semantics as in ASP

married← ¬single single← ¬married

Two stable models: {married}, {single}

• minimal models of the Gelfond-Lifschitz reduct
• alternative level-wise definition for SHACL
• NP-complete validation

• Well-founded semantics are a 3-valued

married← ¬single single← ¬married

Both married and single undefined

• approximation of stable models
• Polynomial validation
• inconsistency tolerant

25

Giving Semantics to Recursive SHACL

• Stable model semantics as in ASP

married← ¬single single← ¬married

Two stable models: {married}, {single}

• minimal models of the Gelfond-Lifschitz reduct
• alternative level-wise definition for SHACL
• NP-complete validation

• Well-founded semantics are a 3-valued

married← ¬single single← ¬married

Both married and single undefined

• approximation of stable models
• Polynomial validation
• inconsistency tolerant

25

Giving Semantics to Recursive SHACL

• Stable model semantics as in ASP

married← ¬single single← ¬married

Two stable models: {married}, {single}

• minimal models of the Gelfond-Lifschitz reduct
• alternative level-wise definition for SHACL
• NP-complete validation

• Well-founded semantics are a 3-valued

married← ¬single single← ¬married

Both married and single undefined

• approximation of stable models
• Polynomial validation
• inconsistency tolerant

25

Stratified Recursive SHACL

Stratified constraints: with only positive recursion cycles

alive← ¬dead certfied← certified

stable model = well-founded model = Perfect model

• {alive} is the only model, certified is false
• P-complete validation

In contrast, supported validation

• Two models: {alive}, {alive, certified}
• NP-complete validation

26

Stratified Recursive SHACL

Stratified constraints: with only positive recursion cycles

alive← ¬dead certfied← certified

stable model = well-founded model = Perfect model

• {alive} is the only model, certified is false
• P-complete validation

In contrast, supported validation

• Two models: {alive}, {alive, certified}
• NP-complete validation

26

Stratified Recursive SHACL

Stratified constraints: with only positive recursion cycles

alive← ¬dead certfied← certified

stable model = well-founded model = Perfect model

• {alive} is the only model, certified is false
• P-complete validation

In contrast, supported validation

• Two models: {alive}, {alive, certified}
• NP-complete validation

26

Stratified Recursive SHACL

Stratified constraints: with only positive recursion cycles

alive← ¬dead certfied← certified

stable model = well-founded model = Perfect model

• {alive} is the only model, certified is false
• P-complete validation

In contrast, supported validation

• Two models: {alive}, {alive, certified}
• NP-complete validation

26

Stratified Recursive SHACL

Stratified constraints: with only positive recursion cycles

alive← ¬dead certfied← certified

stable model = well-founded model = Perfect model

• {alive} is the only model, certified is false
• P-complete validation

In contrast, supported validation

• Two models: {alive}, {alive, certified}
• NP-complete validation

26

Validating SHACL with Ontologies

SHACL + OWL

• Open-world semantics: DLs
• Close-world semantics: SHACL

What if we want both?

• Validating constraints in the presence of ontologies

Our data contains:

hasBird(linda,blu) hasDog(john,ace)

We want to validate PetOwnerShape for John and Linda

PetOwnerShape← ∃hasPet

But we also have a TBox:

hasBird ⊑ hasPet hasDog ⊑ hasPet

27

SHACL + OWL

• Open-world semantics: DLs
• Close-world semantics: SHACL

What if we want both?

• Validating constraints in the presence of ontologies

Our data contains:

hasBird(linda,blu) hasDog(john,ace)

We want to validate PetOwnerShape for John and Linda

PetOwnerShape← ∃hasPet

But we also have a TBox:

hasBird ⊑ hasPet hasDog ⊑ hasPet

27

SHACL + OWL

• Open-world semantics: DLs
• Close-world semantics: SHACL

What if we want both?

• Validating constraints in the presence of ontologies

Our data contains:

hasBird(linda,blu) hasDog(john,ace)

We want to validate PetOwnerShape for John and Linda

PetOwnerShape← ∃hasPet

But we also have a TBox:

hasBird ⊑ hasPet hasDog ⊑ hasPet

27

Certain Answers?

• SHACL has negation
• Certain answer semantics too weak!

hasPet(linda,blu) Bird(blu)

otherPetOwner← ∃hasPet.¬Dog

28

Certain Answers?

• SHACL has negation
• Certain answer semantics too weak!

hasPet(linda,blu) Bird(blu)

otherPetOwner← ∃hasPet.¬Dog

28

Universal models?

For Horn DLs we usually rely on the existence of a universal model
that can be homomorphically embedded into all modes

• aka chase in databases

But SHACL expressions are not preserved under homomorphism!

29

Core universal model

Intuitively:

• universal
• does not contain itself as a substructure

Typical constructions check for ”coreness” after each chase step

30

Core universal model

Intuitively:

• universal
• does not contain itself as a substructure

Typical constructions check for ”coreness” after each chase step

30

Core universal model

Intuitively:

• universal
• does not contain itself as a substructure

Typical constructions check for ”coreness” after each chase step

30

Austere Model Construction

For Horn DLs like DL-Lite and ELHI :

• compute a minimal local successor configuration for each 2-type
• build the model using these successors

Theorem
The austere model is a (possibly infinite) universal core

Avoid expensive minimality check after each chase step!

31

Austere Model Construction

For Horn DLs like DL-Lite and ELHI :

• compute a minimal local successor configuration for each 2-type
• build the model using these successors

Theorem
The austere model is a (possibly infinite) universal core

Avoid expensive minimality check after each chase step!

31

Austere Model Construction

For Horn DLs like DL-Lite and ELHI :

• compute a minimal local successor configuration for each 2-type
• build the model using these successors

Theorem
The austere model is a (possibly infinite) universal core

Avoid expensive minimality check after each chase step! 31

Validation via Rewriting

Given a TBox T and a set of constraints C, obtain C such that, for
every data graph G and any target M:

G validates (CT ,M)
iff

the austere universal model of (T ,G) validates (C,M)

• Calculus to propagate validated shapes using the successor
configuration

• After saturation, generate new constraints
• Works even with stratified negation

Theorem
Validation of stratified SHACL constraints in the presence of
Horn-ALCHI ontologies is ExpTime complete in combined
complexity and PTime complete in data complexity

ExpTime hardness holds even for very simple ontologies!

32

Validation via Rewriting

Given a TBox T and a set of constraints C, obtain C such that, for
every data graph G and any target M:

G validates (CT ,M)
iff

the austere universal model of (T ,G) validates (C,M)

• Calculus to propagate validated shapes using the successor
configuration

• After saturation, generate new constraints
• Works even with stratified negation

Theorem
Validation of stratified SHACL constraints in the presence of
Horn-ALCHI ontologies is ExpTime complete in combined
complexity and PTime complete in data complexity

ExpTime hardness holds even for very simple ontologies! 32

Validation via Rewriting: an example

From

birdShape← Bird birdOwnerShape← ∃hasPet.birdShape

PetOwner ⊑ ∃hasPet hasWingedPet ⊑ hasPet ∃hasWingetPet− ⊑ Bird

the rewriting obtains new constraints like:

birdShape← ∃hasWingedPet− birdOwnerShape← ∃hasWingedPet

33

Validation via Rewriting: an example

From

birdShape← Bird birdOwnerShape← ∃hasPet.birdShape

PetOwner ⊑ ∃hasPet hasWingedPet ⊑ hasPet ∃hasWingetPet− ⊑ Bird

the rewriting obtains new constraints like:

birdShape← ∃hasWingedPet− birdOwnerShape← ∃hasWingedPet

33

What’s next?

Many fun questions open:

• Full negation
• Make this work in practice
• Non-Horn DLs
• SHACL optimization
• validation under updates
• …

Combining Open and Closed-world reasoning still a very exciting
area!

34

	Introduction to Description Logics
	DLs, OWA and the Real World
	Introduction to SHACL
	Recursion in SHACL

	Validating SHACL with Ontologies
	Semantics of SHACL w.r.t.Ontologies
	Validation via Rewriting

