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3. Rational Concept Analysis

2 / 23



Introduction

• A lattice-theoretic framework for reasoning about concepts, objects, and properties.

• Its used for data-mining, knowledge discovery, ontologies, etc.

• Concepts are extracted from a data-structure called a formal context, a triple
K = (G ,M, I ) of objects G , attributes M, and a relation I ⊆ G ×M indicating when
an object ‘has’ and attribute
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Chameleon × × × ×
Crow × × × ×

Ostrich × × × ×
Penguin × × × × ×

Platypus × × × × ×
Snake × × ×

Swallow × × × ×
Whale × × ×

Table: A formal context of animals and some of their properties
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Derivation Operators

Definition (Derivation Operators)

In a formal context (G ,M, I ) the derivation operators are two maps (·)↑ : G 7→ M and
(·)↓ : M 7→ G such that if X ⊆ G and Y ⊆ M

X ↑ := {m ∈ M | ∀g ∈ X : (g ,m) ∈ I}
Y ↓ := {g ∈ G | ∀m ∈ Y : (g ,m) ∈ I}

• The derivation operators (↑, ↓) allow us to move from sets of objects to attributes,
and vice verse

• Given some set of objects X , its derivation is the set of attributes which are common
to all objects in X
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Concepts

• A concept in a formal context is defined by its extension, and intension
• It is a pair (X ,Y ) of sets X ⊆ G and Y ⊆ M such that

• Y consists of the attributes which all objects in X share
• X consists of those objects which have all attributes in Y

Definition (Formal Concept)

In a formal context (G ,M, I ) a concept is an object-attribute pair (X ,Y ) such that
X ↑ = Y and Y ↓ = X .

• Two concepts C1 = (X1,Y1) and C2 = (X2,Y2) can be ordered such that C1 ≤ C2

iff. X1 ⊆ X2 iff. Y2 ⊆ Y1. Then C1 is a subconcept of C2.

• This is a partial order, which corresponds to a complete lattice we call the concept
lattice.
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Concept Lattices

• We can represent the data in a
context as a concept lattice

• Each node represents a concept

• Concepts inherit attributes from
above, and contain objects from
below
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Implications I

Derivation operators also enable us to find correspondence between (sets of) attributes

1. K |= bird → oviparous

2. K |= {aquatic, terrestrial} → oviparous

3. K ̸|= bird → aerial

Why?

1. All objects that are birds are
oviparous,
bird↓ ⊆ oviparous↓

2. oviparous ⊆
{aquatic, terrestrial}↓↑

3. penguin is a bird but not
aerial
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Crow × × ×
Ostrich × × ×
Penguin × × × ×

Platypus × × × ×
Snake × ×

Swallow × × ×
Whale × × ×

Table: Slightly reduced context
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Implications II

• But implications which do not hold in a context might still represent useful
information

• We might be dealing with error-prone data, or want to tolerate exceptions

• Existing work tackles this problem through use of association rules (with support,
confidence)

• But these metrics are unintuitive to settle on, and difficult to explain

• We look for an approach which has a clearer pattern of reasoning, i.e., the KLM
framework
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KLM Framework

• Kraus, Lehmann, and Magidor (KLM) argue that a logic for non-monotonic should
be able to express something like birds usually fly (even though some may not)

b |∼ f

• Expressed as a consequence relation satisfying certain properties (so called
Rationality Postulates)

1. Reflexivity: α → α

3. RW:
α → φ, γ |∼ α

γ |∼ φ

5. Or:
α |∼ φ, γ |∼ φ

α ∨ γ |∼ φ

7. CM:
α |∼ γ, α |∼ φ

α ∧ φ |∼ γ

2. LLE:
α ≡ φ, α |∼ γ

φ |∼ γ

4. And:
α |∼ φ, α |∼ γ

α |∼ φ ∧ γ

6. Cut:
α ∧ γ |∼ φ, α |∼ γ

α |∼ φ

8. RM:
α |∼ φ, α |̸∼ ¬γ

α ∧ γ |∼ φ
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Semantics

• The semantics for a statement like b |∼ f rest on the idea of ordering valuations V
by preference (typicality)1

bfp

bpf bfp

bpf bpf

• Any minimal v ∈ V where birds is true, v ⊩ f

• So, also p |∼ ¬f

1boldface indicates false
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How do we develop a rational consequence relation in FCA?
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Extending the Language

• In FCA, implications are defined over sets of attributes
• We do not naturally have a way of expressing ∨ or ¬
• Even if we want to restrict ourselves to these inexpressive implications, we need to
show that the pattern of non-monotonic reasoning corresponds to a rational
consequence relation

• So we extend the language to compound attributes

Definition (The Language LM)

ϕ := m | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 ∨ ϕ2

m↓ = {g | (g ,m) ∈ I}

(ϕ1 ∧ ϕ2)
↓ = ϕ↓

1 ∩ ϕ↓
2

¬ϕ↓ = G \ ϕ↓

(ϕ1 ∨ ϕ2)
↓ = ϕ↓

1 ∪ ϕ↓
2
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Compound Attributes: Example

(G ,M, I ) =

Republican Quaker Pacifist

Nixon × ×
Bush ×
Penn × ×

• R↓ = {Nixon, Bush},Q↓ = {Nixon, Penn},P↓ = {Penn}
• Those objects that are not republicans, or pacifists

• (¬R ∨ P)↓ = (G \ R↓) ∪ P↓ = {Penn}

13 / 23



Cont.

(G ,M ∪ ¬R ∨ P, I ) =

Republican Quaker Pacifist ¬R ∨ P

Nixon × ×
Bush ×
Penn × × ×
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Preferential Context

• An analogue to the view of a partial order over valuations representing preference is
to order the objects in K

• A preferential context P = (G ,M, I ,⪯) where ⪯ is a partial-order over G .

Day 1

Day 2

Day 3

Sun Rain Wind Hot

Day 1 × × × ×
Day 2 ×
Day 3 × × ×
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Defeasible Implications in FCA

Definition (Defeasible Implication over LM)

A defeasible implication A |∼ B ∈ LM holds in an preferential context P iff. the minimal
objects A↓ ⊆ B↓

Day 1

Day 2

Day 3

Sun Rain Wind Hot

Day 1 × × × ×
Day 2 ×
Day 3 × × ×

• Hot |∼ ¬Rain then holds in P since Hot↓ ⊆ ¬Rain↓

• A partial order doesn’t guarantee Rational Monotonicity
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Rational Monotonicity

Rational Monotonicity =
α |∼ φ, α |̸∼ ¬γ

α ∧ γ |∼ φ

Day 1

Day 2

Day 3

Sun Rain Wind Hot ¬Rain
Day 1 × × × ×
Day 2 × ×
Day 3 × × × ×

1. P |= Hot |∼ ¬Rain
2. P |= Hot |̸∼ ¬Wind
3. P ̸|= Hot ∧ Wind |∼ ¬rain (because of Day 1)
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Ranked Context

Definition

A ranked context R = (G ,M, I ,R,∆) is a formal context with a ranking function
R : G 7→ N, where the partial order imposed by R is modular, and ∆ is a set of
(defeasible) constraints we place over (G ,M, I ).

• Object g is more “typical” than g ′ iff. R(g) < R(g ′)

• Modularity enforces that if two objects are incomparable then they occupy the same
rank

• ∆ represents some external domain knowledge about how we expect objects in a
context to behave (i.e. that mammals are usually viviparous)

• We derive R by a translated BaseRank algorithm (not shown)
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Ranked Context

R K bi
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0 Swallow × × × ×
Crow × × × ×

1 Ostrich × × × ×
Penguin × × × × ×

2 Snake × × ×
Whale × × ×

3 Chameleon × × × ×
Platypus × × × × ×

Table: A ranked context of some vertebrates

• bird |∼ aerial

• terrestrial ∧ bird |∼ ¬aerial
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Recap

• We argued that FCA could benefit from “softer” rules, enabling it to reason with
error-prone, or exceptional data

• Proposed KLM-style defeasible implications as an attempt to do this

• Requires a change from implications over attributes to implications over compound
attributes

• And that we place some order, encoding a view of typicality, over the object set

• Have an algorithm to determine this order, given some background information
about the context (not shown)
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Future Work & Paper

• If we accept that defeasible implications contain useful information, it would be nice
to have consistency w.r.t concepts

• i.e. if bird |∼ fly then the concept derived from bird should contain fly

• This is the notion of a typical concept

• We would obviously like to then have a concept lattice for the set of typical concepts
- this is the tricky part

• If you are interested, we have a paper “Non-monotonic Extensions to Formal
Concept Analysis via Object Preferences”

• Also, Ding, Yiwen, et al. ”Defeasible Reasoning on Concepts.” arXiv preprint
arXiv:2409.04887 (2024)
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Thanks
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