Bridging DLs and SHACL Validation
A DL perspective

Magdalena Ortiz

TU Wien
Joint work with Anouk Oudshoorn, Mantas Simkus, Shqiponja Ahmetaj

Table of contents

1. Introduction to Description Logics
2. DLs, OWA and the Real World

3. Introduction to SHACL
Recursion in SHACL

4. Validating SHACL with Ontologies
Semantics of SHACL w.rt. Ontologies

Validation via Rewriting

Introduction to Description Logics

Description Logics (DLs)

- Family of logics well-suited for describing structured knowledge
through concepts (classes) and roles (relationships)

- Decidable fragments of first order logic (with a funny* syntax)

Description Logics (DLs)

- Family of logics well-suited for describing structured knowledge
through concepts (classes) and roles (relationships)

- Decidable fragments of first order logic (with a funny* syntax)

AfricanCountry
Country

City

City
AfricanCountry
hasCapital™

L I [O [

Country

3 hasCapital.City

3 locatedIn.Country

< 1 locatedIn.Country
Country M 3locatedIn.{Africa}
locatedIn

AfricanCountry(SouthAfrica), Country(Botswana), locatedIn(Botswana, Africa)

Description Logics (DLs)

- Family of logics well-suited for describing structured knowledge
through concepts (classes) and roles (relationships)

- Decidable fragments of first order logic (with a funny* syntax)

AfricanCountry C Country
Country C 3JhasCapital.City
City C 3Jlocatedin.Country
City C <1 locatedIn.Country
AfricanCountry = Country rn 3locatedin.{Africa}
hasCapital= LC locatedIn

AfricanCountry(SouthAfrica), Country(Botswana), locatedIn(Botswana, Africa)

- DL knowledge base = TBox (axioms) + ABox (data)

*Yes, it is an acquired taste. 2

DLs as FOL Fragments

- guarded quantification, no explicit variables, function-free fragments

- mostly contained in FO? or C?
KBs are theories with two types of formulas:

- ABox: data, facts B(c), B(d), r(c,d), r2(d, e) ...

- TBox: axioms, universal formulas

ANBLCC Vx A(x) A B(x) — C(x)
AC3rB VX A(X) — 3y r(x,y) A B(Y)
CCvr{a} X,y C(xX) A r(x,y) = y=a
rcs X,y r(x,y) — s(x,y)

DLs: a toolbox of Computational Logics

DLs are a toolbox:

- different constructors combine into many DLs
of

- choice of the right logic

- taking into account the computational cost

DL-Lite &£ ALC SHOIQ

AfricanCountry C Country v v v v

Country LC VhasCapital.City v v

Country LC —City v v v v

City M 3locIn.AfrCntr C AfricanCity v v v
SouthAfrica £ 3locatedIn.{Africa}

hasCapital™ [locatedIn v v

N

trans(locatedIn)

DLs, OWA and the Real World

What are DLs good for?

What have we achieved in four decades?
- Arich family of logics to describe and reason about graph
shaped data
- Good understanding of expressiveness vs.complexity trade-off
- Boundaries of decidability
- Fragments, safe combinations
- A whole arsenal of algorithmic techniques

- Efficient reasoners

The classic DL Setting

- Data as a labeled graph (ABox)
- Background knowledge in an ontology or TBox

The classic DL Setting

- Data as a labeled graph (ABox)
- Background knowledge in an ontology or TBox

Models as in classical predicate logic

- any structure that satisfies the theory

- for us: any extension of the ABox that satisfies the TBox

DL KB Examples

VeggiePizza(margherita) hasTopping(margherita, mozzarella)

VeggiePizza C Pizza
Pizza ©>, hasTopping.T

DL KB Examples

VeggiePizza(margherita) hasTopping(margherita, mozzarella)

VeggiePizza C Pizza
Pizza ©>, hasTopping.T

Pizz &
oo e ez oo
,6% S » 0 ZZO»/ZMC\
"\%lm&

—
""‘O”gl/mi'} a\
D

®

Models and DL Reasoning

Models : any extension of the ABox that satisfies the TBox

Models and DL Reasoning

Models : any extension of the ABox that satisfies the TBox

Typically, reason over all models, or similarly, model existence

- Logical entailment: subsumption, instance checking, query
answering

- consistency, ...
In practice, (too) many models!

- costly reasoning
- some are unintended!

- sometimes misused or misunderstood

DL Reasoning Examples

Pizza(margherita)
hasTopping(margherita, mozzarella) VeggieTopping(mozzarella)

hasTopping(margherita, tomato) VeggieTopping(tomato)

Pizzam YhasTopping.VeggieTopping C VeggiePizza

g expectations

OWL is too hard #56

dbooth-boston opened this issue on Mar 12, 2019 - 15 comments

You probably don’'t need OWL

And if you do there's a simple way to prove it

Ultimately you may be right, that OWL will never be easy enough for the
middle 33%, because it is rooted in the OWA, and middle-33%-ers should
just avoid it. But | still think it is worthwhile to challenge the community to
see if we can do better, to reach a broader user base.

= r/semanticweb - 1yr. ago
mfairview

Why | Don't Use OWL Anymore

Wrong expectations

:Library rdfs:subClassOf [i)
a owl:Restriction ;
owl:allValuesFrom :Book ;
owlionProperty :holds
13

This is a ridiculously convoluted way to say that a :Library
instance has a :holds property with zero or more :Book values.

Let me start by saying that rdfs:domain and rdfs:range are not constraints and don't mean
what you imply. They are merely producing inferences. Having said this, many people have in
the past used them to "mean" constraints simply because there was no other modeling
language. For background, see

Attempts to use DLs as constraint languages to describe data!

1

Constraints for Graph Data

SHApe Constraint Language
W3C standard since 2017
For RDF data

https://www.w3.org/TR/shacl/

Constraints for Graph Data

SHApe Constraint Language
W3C standard since 2017
For RDF data

DL syntax with constraint semantics

https://www.w3.org/TR/shacl/

Introduction to SHACL

Basic SHACL Syntax

Vocabulary:
- set of property names P (aka roles)
- set of class names C (aka concepts)
- set of node names N (aka individuals)

We define shape expressions :
pu=A|T[{a}|~¢leAp|znEp|E=E
where Ae C,ael,n>0,and E is a path expression
Ex=p|p |EUE|EcE|E"
with p € P.
As usual, we can express

Ve JEe VEg <p-1Ep

Example Shape Expressions

PizzandhasTopping.{mozzarella}AvhasTopping.Vegetarian

PizzaAn >; hasTopping.({aubergine}v{onion}v{artichoke})

14

SHACL Validation - basics

Input:

1. A data graph G
2. A shape expression ¢
3. Aset of target nodes a,...a,

SHACL Validation - basics

Input:

1. A data graph G
2. A shape expression ¢
3. Aset of target nodes a,...a,

The target nodes may be e.g,, nodes in a class or complex query

SHACL Validation - basics

Input:

1. A data graph G
2. A shape expression ¢
3. Aset of target nodes a,...a,

The target nodes may be e.g,, nodes in a class or complex query

Question: Does G validate ¢ at each g;?

- View the data graph as an interpretation
- Semantics of connectives in shape expressions as usual
- Is a; in the extension of ©?, i.e,is Ga model of g; : ©?

SHACL Validation - basics

Input:

1. A data graph G
2. A shape expression ¢
3. Aset of target nodes a,...a,

The target nodes may be e.g,, nodes in a class or complex query

Question: Does G validate ¢ at each g;?

- View the data graph as an interpretation
- Semantics of connectives in shape expressions as usual
- Is a; in the extension of ©?, i.e,is Ga model of g; : ©?

Feasible in PTime

- Model checking is typically easy!

SHACL Validation - basics

Input:

1. A data graph G
2. A shape expression ¢
3. Aset of target nodes a,...a,

The target nodes may be e.g,, nodes in a class or complex query

Question: Does G validate ¢ at each g;?

- View the data graph as an interpretation
- Semantics of connectives in shape expressions as usual
- Is a; in the extension of ©?, i.e,is Ga model of g; : ©?

Feasible in PTime

- Model checking is typically easy!

Satisfiability and containment of SHACL constraints are undecidable!

Validation on an Example

Given the graph:
Pizza
[pizza_margherita}

hasTopping hasTopping asTopping

tomato

Vegetarian Vegetarian Vegetarian

This shape expression validates for the target node margherita:

Pizza AVhasTopping.Vegetarian

16

Shape names in SHACL

The SHACL vocabulary has more:

- set of property names P (aka roles)
- set of node names N (aka individuals)
- set of class names C (aka concepts)
- set of shape names S (similar to concepts)

Shape names in SHACL

The SHACL vocabulary has more:

- set of property names P (aka roles)
- set of node names N (aka individuals)
- set of class names C (aka concepts)
- set of shape names S (similar to concepts)

In SHACL constraints, we assign shape expressions to shape names

S

Shape names in SHACL

The SHACL vocabulary has more:

- set of property names P (aka roles)
- set of node names N (aka individuals)
- set of class names C (aka concepts)
- set of shape names S (similar to concepts)

In SHACL constraints, we assign shape expressions to shape names

S

Targets can then be given as sets of shape atoms

s1(aq),...,sn(an)

A shapes graph contains constraints C and targets T

Recursion in SHACL

The SHACL specification allows shape names in shape expressions:

pu=s|A|T[{a}|~@|eAp|>nEp|E=E

Recursion in SHACL

The SHACL specification allows shape names in shape expressions:

pu=s|A|T[{a}|~@|eAp|>nEp|E=E

Pizza <~ >; hasTopping.T,
VeggiePizza < Pizza A VhasTopping.VeggieTopping,
VeggieTopping + {mozzarella} Vv {tomato}V {basil} Vv {artichoke}

Person + 3hasParent.Person

Validation of Recursive SHACL

We assume each s occurs in only one constraint head:

S @1V Ve

We now need a shape assignment Z that assigns a set of nodes s to
each shape name 7.

19

Validation of Recursive SHACL

We assume each s occurs in only one constraint head:

S @1V Ve

We now need a shape assignment Z that assigns a set of nodes s to
each shape name 7.

Validation of (C,7T") consists on finding an assignment Z such that:

- sT = T for each constraint s «+ ¢ in C
- a € st for every target s(a) in T

19

Back to our Example

[pizza_margherita}

hasTopping hasTopping asTopping

tomato

Pizza < >; hasTopping.T,
VeggiePizza < Pizza A VhasTopping.VeggieTopping,
VeggieTopping + {mozzarella} Vv {tomato}V {basil} Vv {artichoke}

20

Semantics of recursive SHACL

Validation of (C,T) consists on finding an assignment Z such that:

- s = T for each constraint s < ¢ in C
- a € st for every target s(a) in T

21

Semantics of recursive SHACL

Validation of (C,T) consists on finding an assignment Z such that:

- s = T for each constraint s < ¢ in C
- a € st for every target s(a) in T

Satisfiability in DLs where:

- property names P and node names N are closed
- shape names S are open

21

Semantics of recursive SHACL

Validation of (C,T) consists on finding an assignment Z such that:

- s = T for each constraint s < ¢ in C
- a € st for every target s(a) in T

Satisfiability in DLs where:

- property names P and node names N are closed
- shape names S are open

Constraints as concept definitions s = ¢, targets as concept assertions s(a)

Finding an assignment Z

- makes satisfiability coNP hard
- are all assignments equally good?

21

Validation in Recursive SHACL

Director + 3creatorOf.Movie

Movie < JcreatorOf .Director

22

Validation in Recursive SHACL

Director + 3creatorOf.Movie

Movie < JcreatorOf .Director

creatorOf

Shakespeare

22

Validation in Recursive SHACL

Director + 3creatorOf.Movie

Movie < JcreatorOf .Director

creatorOf

Shakespeare Macbeth

|

We can validate Director(Shakespeare) !?!

22

Validation in Recursive SHACL

certifiedNode + 3granted.Certifate V dapprovedBy.certifiedNode

23

Validation in Recursive SHACL

certifiedNode + 3granted.Certifate V dapprovedBy.certifiedNode

approvedBy

(rode 1] [noce 2)

approvedBy

23

Validation in Recursive SHACL

certifiedNode + 3granted.Certifate V dapprovedBy.certifiedNode

approvedBy

(rode 1] [noce 2)

approvedBy

We can validate certifiedNode(node_1)

23

Refining the Semantics of Recursive SHACL

- Supported semantics: any shape assignment
- Other semantics choose well-founded assignments

24

Refining the Semantics of Recursive SHACL

- Supported semantics: any shape assignment
- Other semantics choose well-founded assignments

DLs in 1990s
descriptive vs. least fixpoint semantics for terminological cycles

24

Refining the Semantics of Recursive SHACL

- Supported semantics: any shape assignment
- Other semantics choose well-founded assignments

for terminological cycles

Logic Programs with negation

24

Refining the Semantics of Recursive SHACL

- Supported semantics: any shape assignment
- Other semantics choose well-founded assignments

for terminological cycles

Logic Programs with negation

The validation with recursive shapes is not defined in SHACL and is left to SHACL
processor implementations. For example, SHACL processors may support
recursion scenarios or produce a failure when they detect recursion.

SHACL Recommendation, §3.4.3

24

Giving Semantics to Recursive SHACL

- Stable model semantics as in ASP
married < —single single + —married

Two stable models: {married}, {single}

25

Giving Semantics to Recursive SHACL

- Stable model semantics as in ASP
married < —single single + —married

Two stable models: {married}, {single}

- minimal models of the Gelfond-Lifschitz reduct
- alternative level-wise definition for SHACL
- NP-complete validation

25

Giving Semantics to Recursive SHACL

- Stable model semantics as in ASP
married < —single single + —married

Two stable models: {married}, {single}

- minimal models of the Gelfond-Lifschitz reduct
- alternative level-wise definition for SHACL
- NP-complete validation

- Well-founded semantics are a 3-valued
married < —single single < —married

Both married and single undefined

25

Giving Semantics to Recursive SHACL

- Stable model semantics as in ASP
married < —single single + —married

Two stable models: {married}, {single}

- minimal models of the Gelfond-Lifschitz reduct
- alternative level-wise definition for SHACL
- NP-complete validation

- Well-founded semantics are a 3-valued
married < —single single < —married

Both married and single undefined

- approximation of stable models
- Polynomial validation
- inconsistency tolerant

25

Stratified Recursive SHACL

Stratified constraints: with only positive recursion cycles

26

Stratified Recursive SHACL

Stratified constraints: with only positive recursion cycles

alive «+— —~dead certfied < certified

26

Stratified Recursive SHACL

Stratified constraints: with only positive recursion cycles

alive «+— —~dead certfied < certified

stable model = well-founded model = Perfect model

26

Stratified Recursive SHACL

Stratified constraints: with only positive recursion cycles

alive «+— —~dead certfied < certified

stable model = well-founded model = Perfect model

- {alive} is the only model, certified is false

- P-complete validation

26

Stratified Recursive SHACL

Stratified constraints: with only positive recursion cycles

alive «+— —~dead certfied < certified

stable model = well-founded model = Perfect model

- {alive} is the only model, certified is false

- P-complete validation

In contrast, supported validation

- Two models: {alive}, {alive, certified}

- NP-complete validation

26

Validating SHACL with Ontologies

SHACL + OWL

- Open-world semantics: DLs
- Close-world semantics: SHACL

What if we want both?
- Validating constraints in the presence of ontologies
Our data contains:

hasBird(linda, blu) hasDog(john, ace)

27

SHACL + OWL

- Open-world semantics: DLs
- Close-world semantics: SHACL

What if we want both?
- Validating constraints in the presence of ontologies
Our data contains:

hasBird(linda, blu) hasDog(john, ace)

We want to validate PetOwnerShape for John and Linda

PetOwnerShape < 3hasPet

27

SHACL + OWL

- Open-world semantics: DLs
- Close-world semantics: SHACL

What if we want both?
- Validating constraints in the presence of ontologies
Our data contains:

hasBird(linda, blu) hasDog(john, ace)

We want to validate PetOwnerShape for John and Linda

PetOwnerShape < 3hasPet

But we also have a TBox:

hasBird C hasPet hasDog C hasPet

27

Certain Answers?

- SHACL has negation

- Certain answer semantics too weak!

28

Certain Answers?

- SHACL has negation

- Certain answer semantics too weak!

hasPet(linda, blu) Bird(blu)

otherPetOwner < 3hasPet.—Dog

28

Universal models?

For Horn DLs we usually rely on the existence of a universal model
that can be homomorphically embedded into all modes

- aka chase in databases

linda; PetOwner

hasWP, hasP hasWP,hasP hasP

blu; Bird blu; Bird b c

T = {PetOwner C JhasPet, hasWingedPet C hasPet,
PetOwner C JhasWingedPet}

It matters which facts we add!

linda; PetOwner

hasWP, hasP

But SHACL expressions are not preserved under homomorphism!

29

Core universal model

30

Core universal model

Intuitively:

- universal

- does not contain itself as a substructure

30

Core universal model

Intuitively:

- universal

- does not contain itself as a substructure

Typical constructions check for "coreness” after each chase step

30

Austere Model Construction

For Horn DLs like DL-Lite and ELHT:

- compute a minimal local successor configuration for each 2-type
- build the model using these successors

.CA

i A Y

ﬁ

31

Austere Model Construction

For Horn DLs like DL-Lite and ELHT:

- compute a minimal local successor configuration for each 2-type
- build the model using these successors

.CA

i A Y

ﬁ

Theorem
The austere model is a (possibly infinite) universal core

31

Austere Model Construction

For Horn DLs like DL-Lite and ELHT:

- compute a minimal local successor configuration for each 2-type
- build the model using these successors

.CA

i A Y

ﬁ

Theorem
The austere model is a (possibly infinite) universal core

Avoid expensive minimality check after each chase step! 31

Validation via Rewriting

Given a TBox 7 and a set of constraints C, obtain C such that, for
every data graph G and any target M:

G validates (Cy, M)
iff
the austere universal model of (7, G) validates (C, M)

- Calculus to propagate validated shapes using the successor
configuration

- After saturation, generate new constraints

- Works even with stratified negation
Theorem
Validation of stratified SHACL constraints in the presence of
Horn-ALCHZT ontologies is ExpTime complete in combined
complexity and PTime complete in data complexity

32

Validation via Rewriting

Given a TBox 7 and a set of constraints C, obtain C such that, for
every data graph G and any target M:

G validates (Cy, M)
iff
the austere universal model of (7, G) validates (C, M)

- Calculus to propagate validated shapes using the successor
configuration

- After saturation, generate new constraints

- Works even with stratified negation
Theorem
Validation of stratified SHACL constraints in the presence of
Horn-ALCHZT ontologies is ExpTime complete in combined
complexity and PTime complete in data complexity

ExpTime hardness holds even for very simple ontologies! 32

Validation via Rewriting: an example

From

birdShape < Bird birdOwnerShape <« 3hasPet.birdShape

PetOwner C 3hasPet hasWingedPet C hasPet 3hasWingetPet™ C Bird

33

Validation via Rewriting: an example

From

birdShape < Bird birdOwnerShape < 3hasPet.birdShape

PetOwner C 3hasPet hasWingedPet C hasPet 3hasWingetPet™ C Bird

the rewriting obtains new constraints like:

birdShape < 3hasWingedPet™ birdOwnerShape < 3hasWingedPet

33

What's next?

Many fun questions open:

- Full negation

- Make this work in practice
- Non-Horn DLs

- SHACL optimization

- validation under updates

Combining Open and Closed-world reasoning still a very exciting
area!

34

	Introduction to Description Logics
	DLs, OWA and the Real World
	Introduction to SHACL
	Recursion in SHACL

	Validating SHACL with Ontologies
	Semantics of SHACL w.r.t.Ontologies
	Validation via Rewriting

