Designing Virtual Knowledge Graphs

Diego Calvanese

unibz

KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano, Italy

Ontopic s.r.l. QONTORPIC

Tutorial at Cape-KR 2025
13 February 2025 — Cape Town, South Africa

__ Motivationand VKG Solution VKGGComponents FormalSemantics and Query Answering DesigningaVkGSystem Condusions
Outline

@ Motivation and VKG Solution

® VKG Components

@® Formal Semantics and Query Answering
@ Designing a VKG System

@® Conclusions

unibz

_ Diego Calvanese (unibz +umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (0/110)

__ Motivationand VKG Solution VKGGComponents FormalSemantics and Query Answering DesigningaVkGSystem Condusions
Outline

© Motivation and VKG Solution

unibz

_ Diego Calvanese (unibz +umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR—13/02/2025 (0/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

The problem of data access in data management

In large organization data management is a complex challenge:
* Many different data sets are created independently.
® The data is heterogeneous in the way it is represented and structured.

® Data are often stored across different sources (possibly controlled by different
people / organizations).

The problem of data access

However, complex data processing pipelines (e.g., for analysis, monitoring
and prediction) require to access in an integrated and uniform way such
large, richly structured, and heterogeneus data sets.

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (1/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

How can we address the complexity of data access?

We combine three key ideas:

@ Expose to users/applications the data in a very flexible data model, making use of terms the
users are familiar with
~» Knowledge Graph whose vocabulary is expressed in a domain ontology / global schema.

® Map the data sources to the global schema in order to provide the data for the KG.

® Exploit virtualization, i.e., the KG is not materialized, but kept virtual.

This gives rise to the Virtual Knowledge Graph (VKG) approach to data access,
also called Ontology-based Data Access (OBDA).
[Xiao et al. 2018, IJCAI]

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (21110)

Motivation and VKG Solution

VKG Components

Formal Semantics and Query Answering

Virtual Knowledge Graph (VKG) architecture

O"’/\

|:;| pandas <>

&

>

A

A

Diego Calvanese (unibz + umu + ontopic)

V

Designing a VKG System Conclusions

[1 [11 Query
Result |

E‘:q Query |

SPARQL

Data

Sources

((

!

)|

1)

JSON

Designing Virtual Knowledge Graphs

Cape-KR - 13/02/2025 (3/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

ff | T T}
) Query
Query l I Result

0—{ Ontology

An ontology is a structured formal representation of

concepts and their relationships that are relevant for the

domain of interest. ok
Data

Mapping
Sources

L EEEL N

* In the VKG setting, the ontology has a twofold purpose:
® |t defines a vocabulary of terms to denote classes and properties that are familiar to the user.
® |t extends the data in the sources with background knowledge about the domain of interest, and this
knowledge is machine processable.
® One can make use of custom-built domain ontologies. —-
" unibz
® |n addition, one can rely on standard ontologies, which are available for many domains. —

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (4/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Why a Knowledge Graph for the global schema?

ff | T T}
) Query
Query l I Result

The traditional approach to data integration adopts a
relational global schema.

Data
Sources

L EEEL N

A Knowledge Graph, instead:

® Does not require to commit early on to a specific structure.
® Can better accommodate heterogeneity and deal with missing / incomplete information.
® Does not require complex restructuring to accommodate new information or new data sources.

® Can capture the semantics of the domain of interest, and allows for inference (via the ontolog)(l)l,ilbz

® Can be the basis for explanations.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025

(5/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Why mappings?

Query l I - '?:;T/t
0—{ Ontology

The traditional approach to data integration relies on
mediators, which are specified through complex code.

oho
Data q) Mapping
Sources
L EEEL N

Mappings, instead:

® Provide a declarative specification, and not code.
® Are easier to understand, and hence to design and to maintain.
® Support an incremental approach to integration.

® Are machine processable, hence are used in query answering and for query optimization. unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025

(6/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Why virtualization?

ff | T T}
) Query
Query l I Result

Materialized data integration relies on extract-transform-load
(ETL) operations, to load data from the sources into an
integrated data store / data warehouse / materialized KG.

Data
Sources

L EEEL N

In the virtual approach, instead:

® The data stays in the sources and is only accessed at query time.

* No need to construct a large and potentially costly materialized data store and keep it up-to-date.
® Hence the data is always fresh wrt the latest updates at the sources.

® One can rely on the existing data infrastructure and expertise. unibz
® There is better support for an incremental approach to integration. -

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (71110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions
Incomplete information
Query l I.... Qery
We are in a setting of incomplete information!!! 0-{ Ontology
Incompleteness is introduced:
® by data sources, in general assumed to be incomplete;
® by domain constraints encoded in the ontology. Data
Sources
- o, >
Plus: [g@ﬁlf
Ontologies are logical theories, and hence perfectly
suited to deal with incomplete information!
Minus:
ojg:b k == ==Y -~ 4 Query answering amogntg to-l_ogical
inference, and hence is significantly
more challenging.

v

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs

Cape-KR - 13/02/2025 (8/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Components of the VKG framework

ff | T T}
) Query
Query l I Result

We consider now the main components that make up the o{ Ontology
VKG framework, and the languages used to specify them.

In defining such languages, we need to consider the
tradeoff between expressive power and efficiency,

where the key point is efficiency with respect to the data. Data

Sources

T EEL N

The W3C has standardized languages that are suitable for VKGs:

© Knowledge graph: expressed in RDF [W3C Rec. 2014] (v1.1)

® Ontology O: expressed in OWL2QL [W3C Rec. 2012]

® Mapping M: expressed in R2RML [W3C Rec. 2012] -
® Query: expressed in SPARQL [W3C Rec. 2013] (v1.1) unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (9/110)

__ Motivationand VKG Solution VKGGomponents FormalSemantics and Query Answering DesigningaVkGSystem Condusions
Outline

@® VKG Components
Backbone: RDF
Representing Ontologies in OWL 2 QL
Query Language — SPARQL
Mapping an Ontology to a Relational Database

unibz

 Diego Calvanese (unibz + umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (9/110)

__ Motivationand VKG Solution VKGGomponents FormalSemantics and Query Answering DesigningaVkGSystem Condusions
Outline

@® VKG Components
Backbone: RDF

unibz

 Diego Calvanese (unibz + umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR—13/02/2025 (9/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Resource Description Framework (RDF)

* RDF is a language standardized by the W3C for representing information
[W3C Rec. 2004] (v1.0) and [W3C Rec. 2014] (v1.1).

* RDF is a graph-based data model, where information is represented as (labeled) nodes
connected by (labeled) edges.

Nodes have three different forms:
® literal: denotes a constant value, with an associated datatype;
® |RI (for internationalized resource identifier): denotes a resource (i.e., an object), for which the IRI acts
as an identifier;
® blank node: represents an anonymous object.

An IRI might also denote a property, connecting an object to a literal, or connecting two objects.

See also https://www.w3.org/TR/rdf11-concepts/ for details.

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (10/110)

https://www.w3.org/TR/rdf11-concepts/

RDF triples

RDF provides a description of the domain of interest in terms of triples:

<http://unibz.inf.di/data#person/2> "John"""xsd:string
<http://xmlns.com//foaf/0.1/name>

Triple elements: resources denoted by global identifiers (IRIs)
@ Subject: IRI of the described resource
® Predicate: IRI of the property
® Obiject: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information

@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix : <http://unibz.inf.di/data#>
@base <http://unibz.inf.di/>

v

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (11/110)

<http://xmlns.com/foaf/0.1/>
http://unibz.inf.di/data#

RDF triples

RDF provides a description of the domain of interest in terms of triples:

<:person/2> "John"""xsd:string
foaf:name

Triple elements: resources denoted by global identifiers (IRIs)
@ Subject: IRI of the described resource
® Predicate: IRI of the property
® Obiject: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information

@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix : <http://unibz.inf.di/data#>
@base <http://unibz.inf.di/>

v

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025

(11/110)

<http://xmlns.com/foaf/0.1/>
http://unibz.inf.di/data#

RDF triples

RDF provides a description of the domain of interest in terms of triples:

<data#person/2> "John"""xsd:string
foaf:name

Triple elements: resources denoted by global identifiers (IRIs)
@ Subject: IRI of the described resource
® Predicate: IRI of the property
® Obiject: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information

@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix : <http://unibz.inf.di/data#>
@base <http://unibz.inf.di/>

v

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025

(11/110)

<http://xmlns.com/foaf/0.1/>
http://unibz.inf.di/data#

b otlvatonlan divkalso o O Coreonon > R co =) Son o esTan dl Qo0 v 0o I 0~ 00 0[21 KIS o I - o0 I
RDF — Examples

Class membership:

RDF triple || <uni2/p/25> rdf:type :Professor
Fact Professor(uni2/p/25)

Note: This is typically abbreviated as
| RDF triple || <uni2/p/25> a :Professor

Data property of an individual:

RDF triple || <uni2/p/25> :lastName "Artale"
Fact lastName(uni2/p/25, "Artale”)

Object property of an individual:

RDF triple || <uni2/p/25> :teaches <uni2/c/7>
Fact teaches(uni2/p/25, uni2/c/7)

unibz

_ Diego Calvanese (unibz + umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (12/110)

__ Motivationand VKG Solution VKGGomponents FormalSemantics and Query Answering DesigningaVkGSystem Condusions
RDF graph — Example
<uni2/p/25> rdf:type :Professor
<uni2/p/25> foaf:lastName "Artale"
<uni2/p/25> :teaches <uni2/c/5>

We can represent such a set of facts graphically:

Professor

<uni2/p/25> <uni2/p/38>

:givesLab

:teaches

:lastName :teaches :lastName

:firstName

<uni2/c/7> <uni2/c/5>

"Artale" "Rossi"

rtitle rtitle

"Databases" UNib_z

_ Diego Calvanese (unibz +umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (13/110)

"KR"

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF datatypes

® Datatypes are used with RDF literals to represent values such as strings, numbers, and dates.

® Each datatype is itself denoted by an IRI. E.g., the XML Schema built-in datatypes have IRlIs of
the form http://www.w3.0org/2001/XMLSchema#xxx

® Each datatype associates to elements in a lexical space (i.e., unicode strings) elements from a
value space.
Example:

® datatype: xsd:boolean
® lexical space: { “true”, “false”, “17, “0” }
® value space: {true, false}

® To explicitly associate a datatype to a literal, we use the notation literal” "~ datatype.
Example: 12.5" "xsd:double, 1" "xsd:integer

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (14/110)

Motivation and VKG Solution

VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

XML Schema built-in datatypes (recommended)

Datatype

Value space (informative)

Core types

xsd:string

xsd:boolean
xsd:decimal
xsd:integer

Character strings

true, false

Arbitrary-precision decimal numbers
Arbitrary-size integer numbers

IEEE floating-point xsd:float 32-bit floating point numbers incl. +Inf, 0, NaN
numbers xsd:double 64-bit floating point numbers incl. +Inf, +0, NaN
Time and date xsd:date Dates (yyyy-mm-dd) with or without timezone
xsd:time Times (hh:mm:ss.sss. ..) with or without timezone
xsd:datetime Date and time with or without timezone
Limited-range xsd:byte 8 bit integers (-128, ..., +127)
integer numbers xsd:short 16 bit integers
xsd:int 32 bit integers
xsd:long 64 bit integers

Diego Calvanese (unibz + umu + ontopic)

xsd:unsignedByte
xsd:unsignedShort

8 bit non-negative integers (0, ..., 255)
16 bit non-negative integers

unibz

Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (15/110)

__ Motivationand VKG Solution VKGGomponents FormalSemantics and Query Answering DesigningaVkGSystem Condusions
Additional RDF features

RDF has additional features that we do not cover here:

® blank nodes

® named graphs

unibz

_ Diego Calvanese (unibz +umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (16/110)

__ Motivationand VKG Solution VKGGomponents FormalSemantics and Query Answering DesigningaVkGSystem Condusions
Outline

@® VKG Components

Representing Ontologies in OWL 2 QL

unibz

 Diego Calvanese (unibz + umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (16/110)

What is an ontology?

* An ontology conceptualizes a
domain of interest in terms of
concepts/classes,

(binary) relations, and
their properties.

® |t typically organizes the concepts
in a hierarchical structure.

Diego Calvanese (unibz + umu + ontopic)

Designing Virtual Knowledge Graphs

Cape-KR — 13/02/2025

unibz

(17/110)

What is an ontology?

* An ontology conceptualizes a
domain of interest in terms of
concepts/classes,

(binary) relations, and
their properties.

® |t typically organizes the concepts
in a hierarchical structure.

® Ontologies are often represented
as graphs.

BFO:independent
continuant
SubClass
subClass
BFO:mmaterial entity

Designing Virtual Knowledge Graphs

Cape-KR — 13/02/2025

uinwZ

(17/110)

Motivation and VKG Solution VKG Components

What is an ontology?

* An ontology conceptualizes a
domain of interest in terms of
concepts/classes,

(binary) relations, and
their properties.

® |t typically organizes the concepts
in a hierarchical structure.

® Ontologies are often represented
as graphs.

® However, an ontology is actually a
logical theory, expressed in a
suitable fragment of first-order
logic

Diego Calvanese (unibz + umu + ontopic)

Formal Semantics and Query Answering Designing a VKG System Conclusions

Vx. Actor(x) — Staff(x)

Vx. SeriesActor(x) — Actor(x)

Vx. MovieActor(x) — Actor(x)

Vx. SeriesActor(x) — —MovieActor(x)

Vx. Staff(x) — Jy. ssn(x, y)
Vy. dx. ssn(x, y) — xsd:int(y)
Vx,y,y'. 8sn(x,y) A ssn(x,y’) =y =y

Vx. dy. actsIn(x, y) — MovieActor(x)
Yy. dx. actsIn(x, y) — Movie(y)

Vx. MovieActor(x) — Ty. actsIn(x, y)
¥Yx. Movie(x) — dy. actsIn(y, x)

¥x, y.actsIn(x, y) — playsin(x, y)

unibz

Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (17/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

What is an ontology?

* An ontology conceptualizes a Actor C Staff
domain of interest in terms of SeriesActor C Actor
concepts/classes, MovieActor © Actor
(binary) relations, and SeriesActor C —MovieActor
their properties. Staff C Jssn

® |t typically organizes the concepts dssn™ E xsd:int
in a hierarchical structure. (funct ssn)

® Ontologies are often represented dactsln C MovieActor
as graphs. JactsIn™ £ Movie

® However, an ontology is actually a Mowe'\?ctgr E iacts:n_
logical theory, expressed in a ovie L dactsin

actsin C

suitable fragment of first-order playsin

logic, or better, in description
logics. —

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (17/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

The OWL 2 QL ontology language

OWL 2 QL is one of the three standard profiles of OWL2. [W3C Rec. 2012]

Is derived from the DL-Liteg description logic (DL) [Baader et al. 2003] of the DL-Lite-family.

® |s considered a lightweight ontology language:

® controlled expressive power
¢ efficient inference

Optimized for accessing large amounts of data (i.e., for data complexity):
® Queries over the data modulo the ontology can be rewritten into SQL queries over the underlying
relational database (First-order rewritability of query answering).
® Consistency of ontology and data can also be checked by executing SQL queries (i.e., it is also
first-order rewritable).

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (18/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Classes and properties in OWL2 QL

All ontology languages based on OWL 2 (and hence also OWL 2 QL), provide three types of elements
to construct an ontology:

® Classes (also called concepts), which allow one to structure the domain of interest, by grouping
in a class objects with common properties.
Examples: Movie, Staff, Actor, SeriesActor, ...

* Data properties (also called attributes), which are binary relations that relate objects to values

(or literals, in RDF terminology).
Examples:

® title, associating a string to a Movie;
® ssn, associating an integer to a Person.

® Object properties (also called roles), which are binary relations between objects.
Examples:

® actsln, relating a MovieActor to a Movie;
® worksFor, relating an Employee to a Project.

In the following, to depict an OWL 2 QL ontology, we make use of a graphical notation inspired byunib—z
the one for UML class diagrams. -

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (19/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System

OWL 2 QL knowledge bases
An OWL 2 QL knowledge base (KB) K = (O, &) consists of two parts:

An ontology O modeling the schema level information.

® Contains the declarations of the classes, data properties, and object properties of the ontology.

This constitutes the vocabulary with which we can then query the ontology.
® Contains the axioms that capture the domain knowledge.

* These axioms express the conditions that must hold for the classes and properties in the
ontology.

Conclusions

An RDF graph G, modeling the extensional level information (i.e., facts).

The RDF graph G consists of triples that express membership assertions of the following forms:
® Anindividual <a> belongstoaclass :C: <a> rdf:type :C .
® A pair individual <a> and literal <1> belongs to a data property :A: <a> :A <I> .
® A pair of individuals <al>, <a2> belongs to an object property :P: <al> :P <a2> .

Note: As we will see later, in the VKG setting, the RDF graph of a KB is not given explicitly, but is
(usually) defined implicitly through the database(s) and the mappings.

.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025

(20/110)

Motivation and VKG Solution VKG Components

Formal Semantics and Query Answering

Designing a VKG System Conclusions

Declaration of classes and of data properties

Declaration of a class C
C rdf:type owl:Class . J

Declaration of a data property A
A rdf:type owl:DatatypeProperty J

owl:Class is a predefined class in OWL 2,
whose instances are all the classes of an
ontology.

When a class has no data properties (or the
data properties are not of interest) we
represent the class simply as a rounded
rectangle that contains the class name.

Example:
Movie

Diego Calvanese (unibz + umu + ontopic)

Designing Virtual Knowledge Graphs

owl:DatatypeProperty is a predefined class
in OWL 2, whose instances are all the data
properties of an ontology.

The data properties for a class are typically
depicted together with the class itself.

In that case, we split the rectangle in two, and
we specify the data properties of the class in
the bottom part.

Example: | Movie |

title: xsd:string
rating: xsd:float
subTitle: xsd:string [0..1]

unibz

Cape-KR - 13/02/2025 (21/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Declaration of object properties

owl:0bjectProperty is a predefined class in
OWL 2, whose instances are all object properties

Declaration of an object property P
{ of an ontology.

P rdf:type owl:ObjectProperty .

In the graphical notation, we represent an object property by an arrow that connects two classes and
that is labeled with the name of the object property.

Example:
. actsin .
MovieActor > Movie
m2..n2 m1..n1

The arrow might additionally be labeled with cardinalities. These are pairs of numbers, representing
the minimum and maximum number of connections that an individual might have for the property.

Note: Each data property, and each direct and inverse object property has a cardinality.

In the graphical notation, when the cardinalities are missing, we assume the following defaults:
® [1..1] for a data property;
® 0..* (i.e., no constraint) for an object property; -

* 0..* (i.e., no constraint) for the inverse of an object property. unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (22/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Semantics of OWL 2 QL KBs

An interpretation 7 = (A?, 7)) of a KB K = (O, G) consists of:

® anonempty set AZ, called the interpretation domain (of 7), and

* an interpretation function -7, which maps
® each constant (i.e., individual or literal) ¢ to itself, i.e., ¢’ = ¢; (standard name assumption)
® each class name C to a subset C7 of A?
e each (object or data) property name P to a subset P? of A7 x A?
® The interpretation function is then extended to cover the OWL 2 QL constructs:
(PHY = {0, %) | (x,y) € PT} 3IR? = {(x|there is some y such that (x,y) € R}
-0 = A\ CT

Model
An interpretation 7 is a model of a KB K = (O, &), denoted as 7 E K, if it satisfies all axioms in O
and assertions in G.)

In the next slides, we specify what these axioms/assertions are, as well as the satisfaction conditiowsibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (23/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Axioms in an OWL 2 QL ontology

We discuss now the various types of axioms that can be used in an OWL 2 QL ontology to capture
domain knowledge.

Notes:

® Some of these axioms are part of the RDF Schema (RDFS) language, which is a fragment of
OWL 2 QL, while others go beyond what can be expressed in RDFS.

* |n the following, when we talk about a ‘constant’ we mean either an individual « (denoted by an
IRI) or a literal .

® On the slides, for the assertions that make up the RDF graph, instead of the triple notation we
also make use of a more compact (abstract) notation:

C(a) for <a> rdf:type :C . (membership assertion in a class)
A(a,) for <a> :A <1> . (membership assertion in a data property)
P(ai,a;) for <al> :P <a2> . (membership assertion in an object property)

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (24/110)

b otlvatonlan divkalso o O Coreonon > R co =) Son o esTan dl Qo0 v 0o I 0~ 00 0[21 KIS o I - o0 I
Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) aecCt
Membership (data property) <a> :A <1> A(a, 0) (a,l) € AT
Membership (object property) <al> :P <a2> P(ay, a) (ai,a,) € P*

Subclass assertion

Class disjointness

Property disjointness

Domain of a property

Range of a property

Mandatory participation using
Subproperty assertion

Inverse property

We have used R to denote either an object property P or the inverse P~ of an object property.

We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving =—
ni

data properties. u b_z

_ Diego Calvanese (unibz +umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (24/110)

RDF Schema — Class hierarchy

Class hierarchy co

C1 rdfs:subClassOf C2
CiCC

When class C; is declared to be a
sub-class of class C,, then every object C1
that is an instance of C is also an
instance of C;.

Example: :MovieActor rdfs:subClassOf :Actor .

Inference: <person/2> rdf:type :MovieActor .
= <person/2> rdf:type :Actor .

In DL notation: MovieActor = Actor

MovieActor(person/2) = Actor(person/2) =
unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (25/110)

b otlvatonlan divkalso o O Coreonon > R co =) Son o esTan dl Qo0 v 0o I 0~ 00 0[21 KIS o I - o0 I
Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) aecCt
Membership (data property) <a> :A <1> A(a, 0) (a,l) € AT
Membership (object property) <al> :P <a2> P(a;,a) (ay,a) € P¥
Subclass assertion C1 rdfs:subClassOf C2 CIEGC clco

Class disjointness

Property disjointness

Domain of a property

Range of a property

Mandatory participation using
Subproperty assertion

Inverse property

We have used R to denote either an object property P or the inverse P~ of an object property.

We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involvingb—
ni

data properties. unibz

_ Diego Calvanese (unibz +umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (25/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF Schema — Domain of an object property

Domain of an object property =
. . C1 Cc2
P rdfs:domain C1 .

dPC C

When class C is declared to be the domain of object property P, it means that, whenever a pair
(01,07) is an instance of P, then o, must be an instance of C,.
Said differently, the projection of P on its first component is a subclass of C;.

Example: :actsIn rdfs:domain :MovieActor .
Inference: <person/2> :actsIn <movie/3> .
= <person/2> rdf:type :MovieActor .

In DL notation: dactsin = MovieActor
actsIn(person/2, movie/3) = MovieActor(person/2)

Note: In OWL 2 QL, the default cardinality for an object property is 0..*, as in our graphical notation.
Hence, the above diagram without cardinalities captures correctly the S|tuat|on where in OWL2QL wq]—
do not specify any cardinality for the object property.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (26/110)

b otlvatonlan divkalso o O Coreonon > R co =) Son o esTan dl Qo0 v 0o I 0~ 00 0[21 KIS o I - o0 I
Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) aeCt
Membership (data property) <a> :A <1> A(a, €) (a,0) € AT
Membership (object property) <al> :P <a2> P(a;,a) (a1,a,) € P¥
Subclass assertion C1 rdfs:subClassOf C2 CIEGC clco

Class disjointness
Property disjointness

Domain of a property P rdfs:domain C1 aPcC C {x|Iy.(x,y) e Py cCt
Range of a property
Mandatory participation using

Subproperty assertion
Inverse property

We have used R to denote either an object property P or the inverse P~ of an object property.

We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involvingb—
ni

data properties. unibz

_ Diego Calvanese (unibz +umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (26/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF Schema — Range of an object property

Range of an object property p
. Ci1 Cc2
P rdfs:range C2 .

AP~ C G,

When class C; is declared to be the range of object property P, it means that, whenever a pair
(01, 0-) is an instance of P, then 0, must be an instance of C,.
Said differently, the projection of P on its second component is a subclass of C;.

Example: :actsIn rdfs:range :Movie .
Inference: <person/2> :actsIn <movie/3> .
= <movie/3> rdf:type :Movie .

In DL notation: dactsin™ = Movie
actsin(person/2, movie/3) = Movie(movie/3)

Note: In OWL 2 QL, the default cardinality for the inverse of an object property is 0..*, and this is also
the default in our graphical notation. Hence, the above diagram captures correctly the situation whereb—
in OWL 2 QL we do not specify any cardinality for the inverse of an object property.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (27/110)

b otlvatonlan divkalso o O Coreonon > R co =) Son o esTan dl Qo0 v 0o I 0~ 00 0[21 KIS o I - o0 I
Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) aeCt
Membership (data property) <a> :A <1> A(a, €) (a,0) € AT
Membership (object property) <al> :P <a2> P(a;,a) (a1,a,) € P¥
Subclass assertion C1 rdfs:subClassOf C2 CIEGC clco

Class disjointness
Property disjointness

Domain of a property P rdfs:domain C1 aPcC C {x|Iy.(x,y) e Py cCt
Range of a property P rdfs:range C2 I ce Iy ePicct
Mandatory participation using

Subproperty assertion
Inverse property

We have used R to denote either an object property P or the inverse P~ of an object property.

We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving =—
ni

data properties. u b_z

_ Diego Calvanese (unibz +umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (27/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF Schema — Domain and range of a data property

Domain and range of a data property
A rdfs:domain C . A rdfs:range T .

JAcC JATCT

The declaration of the domain of a data property has the same meaning as for object properties.
As for the range, notice that the RDFS statement “A rdfs:range T.” is analogous to the one for
object properties.

Example: :title rdfs:domain :Movie . Note: In OWL 2 QL, the default cardinality
:title rdfs:range xsd:string . for a data property is [0..*], while in our
Inference: <movie/3> :title "Bladerunner" . graphical notation we assume [1..1] as
= <movie/3> rdf:type :Movie . the default. Hence, the above diagram
"Bladerunner" is of type xsd:string captures correctly the situation where in

In DL notation: Jtitle = Movie ~ Movie C Vtitle.String OWL2QL we do not specify any

title(movie/3, "Bladerunner”) = Movie(movie/3) cardinality for the data property. —
unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (28/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Domain and range of properties — OWL 2 QL vs. graphical notation

* Note that in our graphical notation, whenever we specify an object property, we need to connect
two classes, and therefore we are implicitly specifying the domain and range of the property.

® Something analogous holds for data properties, since we specify them within a class, and hence
we fix their domain.

* In OWL2QL, instead, we are not forced to specify the domain or the range of properties. We can
simply declare them, and leave them completely unconstrained.

® When a data property is unconstrained, this means that:

® the domain is owl:Thing, which is the class of all objects;
¢ therange is rdfs:Literal, which denotes the set of all possible literals.

* When an object property is unconstrained, this means that both its domain and its range are
owl:Thing.

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (29/110)

Motivation and VKG Solution

VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics

Membership (class) <a> rdf:type <C> C(a) aeCt

Membership (data property) <a> :A <1> A(a, l) (a,0) € AT

Membership (object property) <al> :P <a2> P(ay,as) (ar,a,) € P¥

Subclass assertion Cl rdfs:subClassOf C2 CICGC clcct

Domain of a property P rdfs:domain C1 JdPcC C (x| Iy.(x,y) e Py cCt

Range of a property

P rdfs:range C2

{y | In.(x,y) € P} C CZI

* We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving —
uni

data properties.

Diego Calvanese (unibz + umu + ontopic)

Designing Virtual Knowledge Graphs

r4

Cape-KR - 13/02/2025 (29/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

RDF Schema — Property hierarchy

Property hierarch
—— y c12 P2 c22

P1 rdfs:subPropertyOf P2
P] [Pz

When a property P, is declared to be a
sub-property of P,, then every pair of
objects that is an instance of P, is also
an instance of P,.

Note: Typically, when a property P, is a sub-property of a property P», then the respective domains
and ranges are in a subclass relationship.

Example: :actsIn rdfs:subPropertyOf :playsIn .
Inference: <person/2> :actsIn <movie/3> .
— <person/2> :playsIn <movie/3> .

In DL notation: actsin C playsIn -
actsIn(person/2, movie/3) = playsIn(person/2, movie/3) unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (30/110)

Motivation and VKG Solution

VKG Components

Formal Semantics and Query Answering

Syntax and semantics of OWL 2 QL KBs

Designing a VKG System Conclusions

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) aeC’
Membership (data property) <a> :A <1> A(a, l) (a,0) € AT
Membership (object property) <al> :P <a2> P(ay,as) (ar,a,) € P¥
Subclass assertion Cl rdfs:subClassOf C2 CICGC clcct
Domain of a property P rdfs:domain C1 JdPcC C (x| Iy.(x,y) e Py cCt
Range of a property P rdfs:range C2 rcC {ylIny) ePyccl
Subproperty assertion P1 rdfs:subPropertyOf R2 PiCR, PLcR!

* We have used R to denote either an object property P or the inverse P~ of an object property.

* We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involvingb—
uni

data properties.

Diego Calvanese (unibz + umu + ontopic)

Designing Virtual Knowledge Graphs

r4

Cape-KR - 13/02/2025 (30/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System

OWL 2 QL — Inverse (object) property

Inverse property P1 > l
P2 owl:inverseOf P1 . C1 < c2
P2 (inv P1)

PEEPI and PIEP2

Conclusions

When a property P, is declared to be the inverse of P, we have that, (0, 0,) is an instance of P; if
and only if (0>, 01) is an instance of P;.

Note: In the graphical notation that we adopt, there is no standard way to represent that one object
property is the inverse of another one. Therefore, we have introduced a notation resembling the one
used for stereotypes in UML.

Example: :playsIn owl:inverseOf :hasActor .
Inference: <person/2> :playsIn <movie/3> .
— <movie/3> :hasActor <person/2> .

In DL notation: playsin C© hasActor~ and hasActor™ C playsin _
playsin(person/2, movie/3) = hasActor(movie/3, person/2) unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (31/110)

Motivation and VKG Solution

VKG Components

Formal Semantics and Query Answering

Syntax and semantics of OWL 2 QL KBs

Designing a VKG System Conclusions

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) aeCt
Membership (data property) <a> :A <1> A(a, l) (a,0) € AT
Membership (object property) <al> :P <a2> P(ay,as) (ar,a,) € P¥
Subclass assertion Cl rdfs:subClassOf C2 CICGC clcct
Domain of a property P rdfs:domain C1 JdPcC C (x| Iy.(x,y) e Py cCt
Range of a property P rdfs:range C2 rcC {ylIny) ePyccl
Subproperty assertion P1 rdfs:subPropertyOf R2 PiCR, PLcR!
Inverse property P2 owl:inverseOf P1 P =P, PL={(y,%) | (x,y) € P}

* We have used R to denote either an object property P or the inverse P~ of an object property.

* We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving —
uni

data properties.

Diego Calvanese (unibz + umu + ontopic)

Designing Virtual Knowledge Graphs

bz

Cape-KR - 13/02/2025 (31/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System

OWL 2 QL — Class disjointness

Class disjointness

C,C—=(C,

Conclusions

When two classes C, and C, are declared to be disjoint, then they can have no instances in
common. l.e., if o is an instance of C, then it is not an instance of C,, and vice-versa.

Note: In the graphical notation that we adopt, there is no standard way to represent that two classes
are disjoint. Therefore, we have introduced a convenient graphical construct.

Moreover, when representing an ontology as a diagram, we assume that two classes that do not
belong to the same ISA hierarchy are disjoint.

Example: :Actor owl:disjointWith :Movie .
Inference: <person/2> rdf:type :Actor .
<person/2> rdf:type :Movie .
— RDF graph inconsistent with the ontology
In DL notation: Actor & —Movie unibz
Actor(person/2), Movie(person/2) = RDF graph inconsistent with the ontology —

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (32/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Syntax and semantics of OWL 2 QL KBs

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) aecCt
Membership (data property) <a> :A <1> Aa,) (a,) € AT
Membership (object property) <al> :P <a2> P(a,, a) (ai,a,) € P*
Subclass assertion Cl rdfs:subClassOf C2 CiCGC clcct

Class disjointness Cl owl:disjointWith C2 Ci E-G ClcA -cf
Domain of a property P rdfs:domain C1 AP cC C (x| Jy.(x,y) e Py cCf
Range of a property P rdfs:range C2 PG {ylIxy ePicct
Subproperty assertion P1 rdfs:subPropertyOf R2 PICR, P c R{
Inverse property P2 owl:inverseOf P1 P =P; PL={(y,%) | (x,y) € P}

* We have used R to denote either an object property P or the inverse P~ of an object property.

* We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms |nvolvmg—
data properties, except that we might not use the inverse of a data property. unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (32/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

OWL 2 QL — Property disjointness

P2

Property disjointness !
P1 owl:propertyDisjointWith P2 . x

P, C =P, P1

When two properties P; and P, are declared to be disjoint, they can have no instances in common.

Note: In the graphical notation that we adopt, there is no standard way to represent that two object
properties are dijoint. Therefore, we have introduced a convenient graphical construct.
When the domain or the range of two properties are disjoint, then so are the properties. On the other
hand, there might be two properties that are disjoint, although their domain and range are not.
Example: :departFrom owl:propertyDisjointWith :arriveln .
Inference: <flight/1> :departFrom <airport/5> .
<flight/1> :arriveln <airport/5> .

= RDF graph inconsistent with the ontology
In DL notation: departFrom = -arriveln

departFrom(flight/1, airport/5), arriveln(flight/1, airport/5) unibz

= RDF graph inconsistent with the ontology -

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (33/110)

Motivation and VKG Solution VKG Components

Formal Semantics and Query Answering

Syntax and semantics of OWL 2 QL KBs

Designing a VKG System

Conclusions

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) aeCt
Membership (data property) <a> :A <1> A(a, l) (a,0) € AT
Membership (object property) <al> :P <a2> P(ay,as) (ar,a,) € P¥
Subclass assertion Cl rdfs:subClassOf C2 CICGC clcct

Class disjointness C1 owl:disjointWith C2 C1C -G, CclcAN -Cf
Property disjointness P1 owl:propertyDisjointWith P2 P, C-P, Pl (AT xAT)-P]
Domain of a property P rdfs:domain C1 JdPcC C (x| Iy.(x,y) e Py cCt
Range of a property P rdfs:range C2 rcC {ylIny) ePyccl
Subproperty assertion P1 rdfs:subPropertyOf R2 P CR, PLcR!
Inverse property P2 owl:inverseOf P1 P =P, PL={(y,%) | (x,y) € P}

* We have used R to denote either an object property P or the inverse P~ of an object property.

* We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involvingb—
uni

data properties.

Diego Calvanese (unibz + umu + ontopic)

Designing Virtual Knowledge Graphs

Cape-KR — 13/02/2025

r4

(33/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

OWL 2 QL — Mandatory and optional participation to an object property

Mandatory participation
Cl1 rdfs:subClassOf

[rdf:type owl:Restriction ; C1 P c2
owl:onProperty P ; 1.*
owl:someValuesFrom owl:Thing .

]
C,C3dpP

When class C, is declared to have a mandatory participation to object property P, it means that for
every instance o, of C, there must exist an object 0, such that the pair (0, 0,) is an instance of P.
Said differently, C; is a subclass of the projection of P on its first component.

Note: In the graphical notation, the mandatory participation is indicated by a minimum cardinality of 1
associated to the object property. Instead, when the minimum cardinality is 0, the property is

optional for the instances of the class.

Recall that in the graphical notation, the default cardinality is 0..*, hence we have a mandatory
participation only when the cardinality is specified explicitly in the diagram. This is as in OWL 2 QL,unib—z
where mandatory participation needs to be asserted explicitly through an axiom. -

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (34/110)

Jottatonand\Viceisohton SN < ccon oo N co o orpetcsland\overy)iow o I e 00100;2) G stors I - o - B
OWL 2 QL — Mandatory participation — Example

Example:
:SeriesActor rdfs:subClassOf
[rdf:type owl:Restriction ;
owl:onProperty :playsIn ;
owl:someValuesFrom owl:Thing .]
Inference: <person/5> rdf:type :SeriesActor .
-
<person/5> rdf:type
[rdf:type owl:Restriction ;
owl:onProperty :playsIn ;
owl:someValuesFrom owl:Thing .]

In DL notation: SeriesActor C dplaysin

SeriesActor(person/5) = playsin(person/5, s), for some s

unibz

 Diego Calvanese (unibz + umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (35/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

OWL 2 QL — Mandatory and optional data property

A mandatory participation to a data property can be expressed in OWL 2 QL in the same way as for
an object property, except that we use rdfs:Literal instead of owl:Thing. In the graphical
notation, it is indicated by a minimum cardinality of 1 associated to the data property.

Mandatory data property
C rdfs:subClassOf

[rdf:type owl:Restriction ;
owl:onProperty A ; AT T1[1.7]
: persy B A2: T2 [1..1]

owl:someValuesFrom rdfs:Literal

CCcdA

Note: For data properties, in the graphical notation the default cardinality is [1..1], hence in a diagram
data properties are mandatory by default.
Instead, when the minimum cardinality is 0, the data property is optional, which is the default in

OowL2QL.

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (36/110)

Motivation and VKG Solution VKG Components

Formal Semantics and Query Answering

Syntax and semantics of OWL 2 QL KBs

Designing a VKG System

Conclusions

Axiom type OWL Syntax DL Syntax Semantics
Membership (class) <a> rdf:type <C> C(a) aeCt
Membership (data property) <a> :A <1> A(a, l) (a,0) € AT
Membership (object property) <al> :P <a2> P(ay,as) (ar,a,) € P¥
Subclass assertion Cl rdfs:subClassOf C2 CICGC clcct

Class disjointness Cl owl:disjointWith C2 Ci E-G ClcA -cf
Property disjointness P1 owl:propertyDisjointWith P2 P, C-P, Pl (AT xAT)-P]
Domain of a property P rdfs:domain C1 JdPcC C (x| Iy.(x,y) e Py cCt
Range of a property P rdfs:range C2 rcC {ylIny) ePyccl
Mandatory participation using owl:someValuesFrom CC 3R Ccf cIr!
Subproperty assertion P1 rdfs:subPropertyOf R2 P CR, PLcR!
Inverse property P2 owl:inverseOf P1 P =P, PL={(y,%) | (x,y) € P}

* We have used R to denote either an object property P or the inverse P~ of an object property.

* We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving —
uni

data properties.

Diego Calvanese (unibz + umu + ontopic)

Designing Virtual Knowledge Graphs

Cape-KR — 13/02/2025

bz

(36/110)

el a W esan_____ WeEmpmEs e SeEs g Quey Az DEsipaW@eEen CackeEEs
Representing OWL 2 QL ontologies as UML class diagrams/ER schemas
There is a close correspondence between OWL 2 QL and conceptual modeling formalisms, such as

UML class diagrams and ER schemas [Lenzerini & Nobili 1990; Bergamaschi & Sartori 1992; Borgida 1995;
C., Lenzerini, et al. 1999; Borgida & Brachman 2003; Berardi et al. 2005; Queralt et al. 2012].

SeriesActor C Actor rdfs:subClassOf
SeriesActor C —MovieActor owl:disjointWith
dplaysin £ Actor rdfs:domain
dplaysin™ £ Play rdfs:range
MovieActor C HactsIn owl:someValuesFrom
actsin C playsin rdfs:subProperty0f
Actor playsin (p|ay_]
name: String title: String
SeriesActor H MovieActor I K ratingfvllz‘lt)‘;e

Diego Calvanese (unibz + umu + ontopic)

Designing Virtual Knowledge Graphs

subclass

disjointness

domain

range

mandatory participation
sub-association

unibz

Cape-KR - 13/02/2025 (37/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Representing OWL 2 QL ontologies as UML class diagrams/ER schemas

There is a close correspondence between OWL 2 QL and conceptual modeling formalisms, such as
UML class diagrams and ER schemas [Lenzerini & Nobili 1990; Bergamaschi & Sartori 1992; Borgida 1995;
C., Lenzerini, et al. 1999; Borgida & Brachman 2003; Berardi et al. 2005; Queralt et al. 2012].

SeriesActor T Actor rdfs:subClassOf subclass
SeriesActor C —MovieActor owl:disjointWith disjointness
dplaysin £ Actor rdfs:domain domain
dplaysin™ £ Play rdfs:range range
MovieActor C JactsIn owl:someValuesFrom mandatory participation
actsln C playsin rdfs:subProperty0f sub-association
Actor playsin Play
LB > fiode iy In fact, to visualize an OWL 2 QL

- ontology, we could have used
(disjoint} standard UML class diagrams,
instead of the specific graphical

ECllE-RE MovieActor | actsin Blovie notation that we have introduced. yninz
rating: Float unibz

L W

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (37/110)

__ Motivationand VKG Solution VKGGomponents FormalSemantics and Query Answering DesigningaVkGSystem Condusions
Outline

@® VKG Components

Query Language — SPARQL

unibz

 Diego Calvanese (unibz + umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (37/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Query answering — Which query language to use

Querying under incomplete information

Query answering is not simply query evaluation, but a form of logical
inference, and requires reasoning.

Two borderline cases for choosing the language for querying KBs:

© Use the ontology language as query language.

® Ontology languages are tailored for capturing intensional relationships.
® They are quite poor as query languages.

® Use Full SQL (or equivalently, first-order logic).
® Problem: in a setting with incomplete information, query answering is undecidable (FOL validity).

Conjunctive queries — Are concretely represented in SPARQL

A good tradeoff is to use conjunctive queries (CQs) or unions of CQs (UCQs), corresponding to
SQL/relational algebra (union) select-project-join queries.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (38/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System

SPARQL query language

® |s the standard query language for RDF data. [W3C Rec. 2008, 2013]
e Core query mechanism is based on graph matching.
SELECT 7?p 7t

Conclusions

teach titl
WHERE { ?7p rdf:type Professor . D —— (2 —
?p teaches ?c 4t .
?c rdf:type Course repe T

?c title ?t . OProfessor OCourse
3

Additional language features (SPARQL 1.1):
® UNION: matches one of alternative graph patterns
® OPTIONAL: produces a match even when part of the pattern is missing
® complex FILTER conditions
® GROUP BY, to express aggregations
® MINUS, to remove possible solutions

® property paths (regular expressions)
e ...

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (39/110)

Motivation and VKG Solution

VKG Components

Formal Semantics and Query Answering Designing a VKG System Conclusions

SPARQL Basic Graph Patterns

Basic Graph Pattern (BGP) are the simplest form of SPARQL query, asking for a pattern in the RDF
graph, made up of triple patterns.

Example: BGP

SELECT ?p ?1n ?c 7t

WHERE {

?p :lastName ?1n

?p :teaches ?c
?7c :title 7t

When evaluated over the RDF graph
O Professor

rdf:type rdf:type

<uni2/p/25> <uni2/p/38>
:givesLab

:teaches)
:lastName :teaches :lastName

:firstName

<uni2/c/7> <uni2/c/5>

} "Artale" .title ‘title "Anna" "Rossi"
o "KR" "Databases"
... the query returns:
p In c t
<uni2/p/25> | "Artale" | <uni2/c/5> | "Databases"”
<uni2/p/25> | "Artale" | <uni2/c/7> "KR" -

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (40/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Abbreviated syntax for Basic Graph Patterns

We can use an abbreviated syntax for BGPs, that avoids repeating the subject of triple patterns.

Example: BGP Example: BGP with abbreviated syntax
SELECT ?p ?1ln ?c ?t 7?r SELECT ?p ?1n ?c ?t 7r
WHERE { WHERE {

?p :lastName ?1n . ?p :lastName ?1n ;

?p :teaches ?c . :teaches ?c

?c :title ?t . ?c :title ?t ;

?7c :room ?r . :room ?r
3 3

v v

When we end a triple pattern with a’;’ (instead of ’.’), the next triple pattern uses the same subject
(which therefore is not repeated).

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (41/110)

Projecting out variables in a SPARQL query
A query may also return only a subset of the variables used in the BGP.

When evaluated over the RDF graph

Professor

Example: BGP with projection

SELECT 7?1n 7t

WHERE { <uni2/p/25>
?p :lastName ?1n
?p :teaches 7?c
?c :title ?t

<uni2/p/38>
:givesLab

:teaches

:lastName :teaches :lastName

:firstName

<uni2/c/7> <uni2/c/5>

"Artale" . . "Anna" "Rossi"
(title stitle
}
y
"KR" "Databases"
... the query returns:
In t
"Artale" | "Databases"
"Artale" |IKRII —

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (42/110)

Anonymous variables

We canuse [...] to represent an anonymous variable.

Example: BGP Example: BGP with anonymous variable
SELECT ?1n ?t 7?r SELECT ?1ln ?t ?r
WHERE { WHERE {
?p :lastName ?1n ; ?p :lastName ?1n ;
:teaches 7c . :teaches
?c :title ?t ; [:title 7t ;
:room ?r . :room ?r .]
} v } v

Within the square brackets, the triple patterns, separated by ’;’, all have the anonymous variable as
subject.

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (43/110)

Jvottatonand\Viceisohton SN < ccon oo N o o orpeesland\overy)iow o I e o0100;2) G storn I - c 2 B
Union of Basic Graph Patterns

Example: BGPs with UNION
SELECT ?p ?1ln ?c
WHERE {
{ ?p :lastName ?1n . ?p :teaches ?c . }
UNION
{ ?p :lastName ?1ln . ?p :giveslLab ?c . }
}
v
When evaluated over ... the query returns:
Professor
rdf:type P 1n [
cuni2/p/25> cuni2/p/38> <uni2/p/25> "Artale" <uni2/c/5>
:givesLab <uni2/p/25> "Artale" <uni2/c/7>
R teaches :teaches LastName <uni2/p/38> "Rossi" <uni2/c/5>

:firstName

<uni2/c/7> <uni2/c/5>

: "Anna" "Rossi"
stitle —

unibz

"Artale" .
rtitle

"KR" "Databases"

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (44/110)

Extending BGPs with OPTIONAL

We might want to add information when available, but not reject a solution when some part of the
query does not match.

When evaluated over the RDF graph

Professor

Example: BGP with OPTIONAL
SELECT ?p ?fn ?1n

WHERE { <uni2/p/25> . <uni2/p/38>
:givesLab
?2p - ?
?p :lastName ?1ln actiiane - teaches :lastName
OPTIONAL . { . <uniz/c/7> . &miz/c/5> :firstName
?p :firstName ?fn Artale) “Anna” "Rossi"
} rtitle
} "KR" "Databases"
... the query returns:
p fn In
<uni2/p/25> "Artale"
<uni2/p/38> | "Anna" "Rossi" unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (45/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

ORDER BY, LIMIT, and OFFSET

We might be interested in obtaining the results in a certain order, and/or only some of the results.
This is controlled by three clauses, appended to the WHERE {} block: ORDER BY, LIMIT, and OFFSET.

Example: Ordering and limiting the results Example: Multiple order comparators
SELECT ?1n ?t ?r SELECT ?1n ?t ?r
WHERE { WHERE {

?p :lastName ?1ln ; ?p :lastName ?1ln ;

:teaches 7?7c . :teaches ?c

?c :title ?t ; :room ?r . ?c :title ?t ; :room ?r
} }
ORDER BY ?1n ORDER BY ASC(?1n) DESC(?t)
LIMIT 10 ol
OFFSET 5 The default is no limit, and offset 0.

v

Each order comparator consists of an expression, with an optional order modifier applied to it:
® ASC(Q) for ascending order, which is the default; unibz
® DESC(Q) for descending order. -

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (46/110)

Motivation and VKG Solution VKG Components

FILTER conditions

Formal Semantics and Query Answering Designing a VKG System Conclusions

We might want to select only those answers to a query that respect some condition.
This can be achieved by adding to the query one or more FILTER conditions.

Example: BGP with a FILTER condition
SELECT ?1n ?dob
WHERE {
?p :lastName ?1n ; :isBorn ?dob
FILTER("1990-01-01"""xsd:dateTime <= ?dob &&
?dob < "1996-01-01"""xsd:dateTime)

More in general, the argument of FILTER() is an expression returning an xsd:boolean, built using:
® comparison atoms, which use the comparison operators: =, !=, <, >, <=, >=;

® |ogical connectives: & and | |;
® EXISTS { pattern } and NOT EXISTS { pattern }, where pattern is a graph pattern; -
® SPARQL functions (for more details, see the document defining the SPARQL standard). unibz
Diego Calvanese (unibz + umu + ontopic)

Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (47/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering

SPARQL algebra

We have seen the following features of the SPARQL algebra:
® Basic Graph Patterns
e UNION
® OPTIONAL
® ORDER BY, LIMIT, OFFSET
® FILTER conditions

The overall algebra has additional features:

Designing a VKG System

® GROUP BY, to express aggregations and support aggregation operators

® MINUS, to remove possible solutions
® path expressions, corresponding to regular expressions

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs

Cape-KR — 13/02/2025

Conclusions

unibz

(48/110)

__ Motivationand VKG Solution VKGGomponents FormalSemantics and Query Answering DesigningaVkGSystem Condusions
Outline

@® VKG Components

Mapping an Ontology to a Relational Database

unibz

 Diego Calvanese (unibz + umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (48/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Use of mappings

In the VKG framework, the mapping encodes how the data in the sources should be used to create
the Virtual Knowledge Graph, which is formulated in the vocabulary of the ontology.

VKG defined from the mapping and the data. Query l T"" Query

® Queries are answered with respect to the ontology and
the data of the VKG.

® The data of the VKG is not materialized (it is virtual!).

® [nstead, the information in the ontology and the
mapping is used to translate queries over the ontology
into queries formulated over the sources. Data

Sources

-
] P N
Note: The graph is always up to date wrt the data sources. E = @ @ T

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (49/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mismatch between data layer and ontology

Impedance mismatch

® Relational databases store values.

® Knowledge bases / ontologies represent both objects and values.
We need to construct the ontology objects from the database values.

e

Proposed solution

The specification of how to construct the ontology objects that populate the virtual knowledge
graph from the database values is embedded in the mapping between the data sources and the

ontology.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (50/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

VKG mapping

The mapping consists of a set of assertions of the form:
Q.\'q/(f) i ‘V(Zi’)

® 0,,(X) is the source query expressed in SQL.

* W(7.%) is the target, consisting of a set of triple patterns (i.e., atoms) that refer to the classes
and properties of the ontology and make use of the answer variables X of the SQL query.

To address the impedance mismatch, in the target query:

® we specify how to construct valid IRIs (that act as object identifiers), by concatenating database
values and string constants;

* to refer to a database value, we use an answer variable of the source query;

* we call a term that constructs an IRI by referring to answer variables of the source query, an
IRI-template.

uninz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (51/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Triple patterns and IRI-templates

Intuition behind the mapping

The answers returned by the SQL query in the source-part of the mapping are used to create, via the
IRI-templates, the objects (and values) that populate the classes/properties in the target part.

More precisely:
® Each triple pattern in the target part has one of the forms:

iri;(¥;) rdf:type C where C is a class of the ontology, or
iri, (1) prop iri)(3%) where prop is a (data or object) property of the ontology.

* For each answer tuple d returned by the source query O,,(X) (when evaluated over the
database), the iri-template iri;(X;) generates an object/value iri;(d;) of the VKG.

® Such objects/values are then used to populate the classes and properties of the ontology
according to what specified in the target part of the mapping.

In this way we provide a solution to the impedance mismatch problem. unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (52/110)

Motivation and VKG Solution VKG Components

A concrete mapping language

Formal Semantics and Query Answering

Designing a VKG System

We describe the concrete mapping language adopted by the Ontop system.

In the Ontop mapping language, each mapping assertion is made up of three parts:
* A mapping identifier, which is convenient to refer to a specific mapping.
* The source part, which is a regular SQL query over the data source(s).
* The target part, which is a set of triple patterns that make use of IRI-templates.
In the target part, the answer variables of the source part are enclosed in {...}.

Mapping m;

® Mapping identifier: m1

® Source part:
SELECT mcode,
FROM MOVIE
WHERE type = "m"

® Target part:
:m/{mcode} rdf:type

mtitle

:Movie

:m/{mcode} :title {mtitle}

v

Mapping m;,
® Mapping identifier: m2
® Source part:

SELECT M.mcode, A.acode
FROM MOVIE M, ACTOR A
WHERE M.mcode = A.pcode
AND M.type = "m"
® Target part:
:a/{acode} :actsIn :m/{mcode}

Conclusions

Diego Calvanese (unibz + umu + ontopic)

Designing Virtual Knowledge Graphs

Cape-KR — 13/02/2025

V.
(53/110)

Mapping language — Example

Ontology O: Mapping M:
Ao) layein P my: SELECT mcode, mtitle FROM MOVIE

MJ S title: String WHERE type = "m"

~s :m/{mcode} rdf:type :Movie .
:m/{mcode} :title {mtitle}

. . 1 adin Tovie my: SELECT M.mcode, A.acode FROM MOVIE M, ACTOR A
{SaESAN°r}*{ M°WEAm°rJ 1.+ |rating: Float WHERE M.mcode = A.pcode AND M.type = "m"
~» :a/{acode} :actsIn :m/{mcode}
Database D:
MOVIE ACTOR

mcode | mtitle | myear | type | --- pcode | acode | aname

5118 The Matrix 1999 m cee 5118 438 K. Reeves

8234 Altered Carbon | 2018 s e 5118 572 C.A. Moss

2281 Blade Runner 1982 m cee 2281 271 H. Ford

The mapping M applied to database D generates the virtual knowledge graph M(D):

:m/5118 rdf:type :Movie . :m/5118 :title "The Matrix"

:m/2281 rdf:type :Movie . :m/2281 :title "Blade Runner"

:a/438 :actsIn :m/5118 . :a/572 :actsIn :m/5118 . :a/271 :actsIn :m/2281
Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs

Cape-KR — 13/02/2025

unibz

(54/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Standard mapping languages

Several proposals for concrete languages to map a relational DB to an ontology:
® They assume that the ontology is populated in terms of RDF triples.
® Some template mechanism is used to specify the triples to instantiate.
Examples: D2RQ’, SML2, Ontop®

R2RML
® Most popular RDB to RDF mapping language
® W3C Recommendation 27 Sep. 2012, http://www.w3.org/TR/r2rml/
* R2RML mappings are themselves expressed as RDF graphs and written in Turtle syntax.

Thttp://d2rq.org/d2rq- language —

2http://sparqlify.org/wiki/Sparqlification_mapping_language unibz

3https ://9github.com/ontop/ontop/wiki/ontopOBDAModel#Mapping_axioms -
Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (55/110)

http://www.w3.org/TR/r2rml/
http://d2rq.org/d2rq-language
http://sparqlify.org/wiki/Sparqlification_mapping_language
https://github.com/ontop/ontop/wiki/ontopOBDAModel#Mapping_axioms

__ Motivationand VKG Solution VKGGComponents FormalSemantics and Query Answering DesigningaVkGSystem Condusions
Outline

@® Formal Semantics and Query Answering

unibz

_ Diego Calvanese (unibz +umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (55/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions
VKGs: Formalization

== Query [- . ° 9
o Result | 0-{ Ontology
-l |

& o

1 To formalize VKGs, we distinguish between the intensional and the
@j Mapping extensional level information.

Sou?ii[E\ u° ?

A VKG specification is a triple # = (O, M, S), where:
® Ois an ontology (expressed in OWL2QL),

® Sis a (possibly federated) relational database schema for the data sources, possibly with
integrity constraints,

* M s a set of (R2RML) mapping assertions between O and S.

A VKG instance is a pair J = (P, D), where
°* P =(0,M,S)is a VKG specification, and
* Dis a (possibly federated) relational database compliant with S.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (56/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Semantics of VKGs

- =
e Query
Query l] Result

O—{ Ontology

oA

Data @ Mapping
Sources

(B= e m’

Note:

Remember:
® The mapping M generates from the data D in the sources a
virtual knowledge graph V = M(D).
® Therefore, the pair (O, M(D)) is a knowledge base.

e Semantics for a VKG instance can thus be defined in terms of
the semantics of a KB.

Model of a VKG instance

An interpretation 7 is a model of (P, D), denoted as 7 E (P, D), if T
is a model of the KB (O, M(D)).

® In general, (P, D) has infinitely many models, and some of these might be infinite.
* However, for query answering, we do not need to compute such models.

Diego Calvanese (unibz + umu + ontopic)

unibz

Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (57/110)

Designing a VKG System Conclusions

Formal Semantics and Query Answering

1

Motivation and VKG Solution VKG Components
Example of VKG instance and corresponding KB
e o)
s -~ o " ' 2
exposes -
User N
i i DB D
queries i VKGM(D)
A owl:subclassOf B; SELECT id FROM T1 w~ :a/{id} a
C owl:disjointWith A. SELECT id FROM T2 v :b/{id} a
Ontology O Mapping M
L KB (O, M(D))) L Physical Layer)
\ / unibz
Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (58/110)

Diego Calvanese (unibz + umu + ontopic)

Motivation and VKG Solution

VKG Components

Formal Semantics and Query Answering

Example of VKG instance and corresponding KB

Designing a VKG System

(pasina,)
(s . “ %)
::‘ '- —_— T
exposes o -
User VT3 : L
. 2 DB D z
queries > VKGM(D) i E
e rreaes ™ et ../
A owl:subclassOf B; SELECT id FROM T1 v~ :a/{id} a :A
C owl:disjointWith A. SELECT id FROM T2 v~ :b/{id} a :B
Ontology O Mapping M
L KB (O, M(D)) Physical Layer)
\ J

Diego Calvanese (unibz + umu + ontopic)

Designing Virtual Knowledge Graphs

Cape-KR — 13/02/2025

Conclusions

unibz

(58/110)

Motivation and VKG Solution

VKG Components

Formal Semantics and Query Answering

Designing a VKG System

Example of VKG instance and corresponding KB

(I
s —~" s r
7 4
E exposes T b
User S 1 :
s o ta/l1aA. 2 DB D 2
3 2 5 1
. 2 : g :b/1 aB.
2 VKG M(D : ’ U
queries _’" () . :a/2aA.
O ../
A owl:subclassOf B; SELECT id FROM T1 v~ :a/{id} a :A
C owl:disjointWith A. SELECT id FROM T2 v~ :b/{id} a :B
Ontology O Mapping M
L KB (O, M(D))) L Physical Layer
\

Conclusions

J unibz

Diego Calvanese (unibz + umu + ontopic)

Designing Virtual Knowledge Graphs

Cape-KR — 13/02/2025

(58/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Query answering in KBs — Certain answers

In VKGs, we want to answer queries formulated over the ontology, by using the data provided by the
data sources through the mapping.

Consider our formalization of VKGs and a VKG instance 7.

Certain answers cert(q, J) — Intuition

Given a VKG instance J and a query g over 7, the certain answers cert(q, J) to g over J are those
answers to ¢ that hold in every model of 7.

Certain answers cert(q, 7)) — Formal definition

Given a VKG instance J = (P, D) and a query ¢ over J, a tuple ¢ of constants in M(D) is a certain
answer to g over 7, i.e., ¢ € cert(q,), if for every model I of J we have that ¢ € eval(g, 7).

Note: Each certain answer ¢ is a tuple of constants in M(D), but when we evaluate g over an interpretation 7, it
returns tuples of elements of AZ. Therefore, we should actually require that & € eval(g, 7), and not that
ceeval(g,I). unibz
However, due to the standard names assumption, we have that &7 = ¢, so the two conditions are equivalent. -

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (59/110)

Motivation and VKG Solution VKG Components

First-order rewritability

Formal Semantics and Query Answering Designing a VKG System Conclusions

To make computing certain answers viable in practice, the VKG setting relies on reducing it to
evaluating SQL (i.e., first-order logic) queries over the data.

Consider a VKG specification # = (O, M, S).
First-order rewritability

A query r(X) is a first-order rewriting of a query ¢(x) with respect to % if, for every source DB D,
certain answers to ¢(¥) over (P, D) = answers to r(¥) over M(D).

For OWL 2 QL ontologies and (a subset of) R2RML mappings,
(core) SPARQL queries are first-order rewritable.

In other words, in VKGs, we can compute the certain answers to a SPARQL query by
evaluating over the sources its rewriting, which is a SQL query.

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (60/110)

Under the hood: Query evaluation process |

OWL 2 QL Ontology O Mapping M

A owl:subclassOf B; SELECT id FROM T1 v :a/{id} a A
C owl:disjointWith A.

SELECT id FROM T2 w~~ :b/{id} a B

SPARQL query ¢

Unfolded Query Guns

SPARQL Result SQL Result Il Evaluation Il

unib_z

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (61/110)

Under the hood: Query evaluation process Il

OWL 2 QL Ontology O Mapping M
A owl:subclassOf B; SELECT id FROM T1 v :a/{id} a A
C owl:disjointWith A. SELECT id FROM T2 v~ :b/{id} a B
{7xaB}

SPARQL query ¢

Unfolded Query Guns

SQL Result '_IlEValuatlonl
DB D
® Problem: Find Ans := cert(q, (P, D)) := cert(q, (O, M(D))) (certain answers)
® with cert(...) defined as (M 7o 0y €val(q, I) (query evaluatiggbz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (61/110)

Motivation and VKG Solution

Under the hood: Query evaluation process |l

VKG Components Formal Semantics and Query Answering

Designing a VKG System

Conclusions

{7xaB}

SPARQL query ¢

OWL 2 QL Ontology O Mapping M
A owl:subclassOf B; SELECT id FROM T1 v :a/{id} a A
C owl:disjointWith A. SELECT id FROM T2 v~ :b/{id} a :B

{?xaB.} UNION {?xa A.}

Rewriting Rewritten Query ¢rc. Unfolding

Unfolded Query guns

SPARQL Result Res. Translation SQL Result Evaluation
A
-
DB D

® Problem: Find Ans := cert(q, (P, D))
® 4., isarewriting ~ Ans = eval(g,.,,, can(M(D)))
where can(M(D)) denotes the (unique) model for the VKG

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs

[C., De Giacomo, et al. 20071—
unibz

Cape-KR - 13/02/2025 (61/110)

Jottatonand\ViGisohton I ccon oo > N ol orpacsand Qvery/anow oo I e 00100;2) G stor) I <o c - B
Under the hood: Query evaluation process IV

Mapping M
SELECT id FROM T1 ww :a/{id} a :A'

OWL 2 QL Ontology O

SELECT id FROM T2 v~ :b/{id} a

SELECT id,“:b” AS t
FROM T2

{?xaB.}

SPARQL query ¢

A owl:subclassOf B;
C owl:disjointWith A.
{?xa B.} UNION {?xa A.}
Rewritten Query g,

UNION
SELECT id, “a” AS t
FROM T1

Unfolded Query guns

SPARQL Result Res. Translation SQL Result Il Evaluation Il
[
DB D

® Problem: Find Ans := cert(q, (P, D))
® (.. isarewriting ~» Ans = eval(g,.,, can(M(D)))
® g, is atranslation ~» Ans = eval(q,, s, D)

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs

[C., De Giacomo, et al. 2007}
[Poggi et al. 20812

Cape-KR — 13/02/2025 (61/110)

Motivation and VKG Solution

VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions
Under the hood: Query evaluation process V
OWL 2 QL Ontology © Mapping M
A owl:subclassOf B; SELECT id FROM T1 v a/{id} a ‘A s
C owlidisjointiith A. SELECT 1d FROM T2 v 1/{id} o SELECT id.“b" AS ¢
{7xaB} FROM T2
{7xaB} UNION {?xa A} UNION
SELECT id, “a” ASt
Rewriting Unfolding FROM T1
i i .]
- SQL Result) Evaluation
- A
O
DB D
® Problem: Find Ans := cert(q, (P, D))
Grew IS @rewriting ~ Ans = eval(q,.,., can(M(D))) [C., De Giacomo, et al. 2007
. . . Y4
® g,y is a translation ~» Ans = eval(q,,r, D) [Poggi et al. 208

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (61/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Under the hood: Query evaluation process VI

(B
OWL 2 QL Ontology O Mapping M
A owl:subclassOf B; SELECT id FROM T1 we :a/{id} a ‘A’ e a
C owl:disjointWith A. SELECT id FROM T2 we :b/{id} a SELECT id,"b" AS ¢
{7xaB} FROM T2
{?xa B.} UNION {?xa A.} UNION

SELECT id, “a” AS t

SPARQL query ¢ Rewriting Rewritten Query g, Unfolding FROM T1

PARQL Result EEE s Result D m‘
=R
DB D
® Problem: Find Ans := cert(q, (P, D))
Gren IS @rewriting ~ Ans = eval(q,.,,, can(M(D))) [C., De Giacomo, et al. 2007
® g,y is a translation ~ Ans = eval(q,,r, D) [Poggi et al. 20HP2

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (61/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

The Ontop system [c., cogrel, et al. 2017, Semantic Web J.], [XLKK*20]

Nnnton

https://ontop-vkg.org/

State-of-the-art VKG system.

Addresses the key challenges in query answering of scalability and performance.

Compliant with all relevant Semantic Web standards:
RDF, RDFS, OWL 2 QL, R2RML, SPARQL, and GeoSPARQL.

® Supports all major relational DBMSs:
Oracle, DB2, MS SQL Server, Postgres, MySQL, Teiid, Dremio, Denodo, etc.
® Open-source and released under Apache 2 license.

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (62/110)

https://ontop-vkg.org/

Query answering in Ontop

Rewritten
SPARQL Qﬁ,-

T-Mapping /M

Ontology _ | Ontology Ontology | Classified Mapping
file parsing classification compilation |+

OFFLINE

unibz

_ Diego Calvanese (unibz +umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (63/110)

__ Motivationand VKG Solution VKGGComponents FormalSemantics and Query Answering DesigningaVkGSysem Condusions
Outline

@ Designing a VKG System
Ontology and Mapping Design
VKG Mapping Patterns
VKG Design Scenarios

unibz

 Diego Calvanese (unibz + umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (63/110)

__ Motivationand VKG Solution VKGGComponents FormalSemantics and Query Answering DesigningaVkGSysem Condusions
Outline

@ Designing a VKG System
Ontology and Mapping Design

unibz

 Diego Calvanese (unibz + umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (63/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Who provides the ontology?

® Designing an ontology is not an easy task.

* |In many domains (e.g., the biomedical one) ontologies are developed independently by trained
experts and are already available to be re-used.

® Having “standardized ontologies” enables interoperability across different data sources.

® However, ontology design is a well investigated task, and methodologies and supporting tools
are readily available. See, e.g.,
® the series of Workshops on Ontology Design Patterns http://ontologydesignpatterns.org/;
* the OntoClean methodology for ontology analysis based on formal, domain-independent properties of
classes [Guarino & Welty 2009].

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (64/110)

http://ontologydesignpatterns.org/

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions
Who provides the mappings?
VKG mappings:
® Map complex queries to complex queries — cf. GLAV relational mappings [Lenzerini 2002].
® Overcome the abstraction mismatch between relational data and target ontology.

® Are inherently more sophisticated than mappings for schema matching [Rahm & Bernstein 2001]
and ontology matching [Euzenat & Shvaiko 2007].

As a consequence:

* Management of VKG mappings is an essentially manual effort that is labor-intensive and
error-prone.

® Requires highly-skilled professionals [Spanos et al. 2012].

* Writing mappings is challenging in terms of semantics, correctness, and performance.

Designing and managing mappings is the most critical bottleneck J
unibz

for the adoption of the VKG approach.

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (65/110)

Mot vetonen VS0l ot N Gl ool N o, 2 o oe1 ety e N 000 2|V L5210 o N o1 = 0
Who provides the mapping?

Writing mappings manually is a
time-consuming and error-prone task. J

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (66/110)

Who provides the mapping?

= skyserver dr16 202011 x | +

« > ca [} L3

©Lm@mBEY =

e |

L9728 e
5726 et s
a7z o
3729 cont
o 3729 con e
5729 e

3729 e e
9729 eaw

i 5779 e e
o972 e
L9729 e
o 9778 st s
ERT

i sty Eltreticie. o130~ | @) styserver d..lafirefor B

gom O =l

unib_z

_ Diego Calvanese (unibz +umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (67/110)

Who provides the mapping?

cbio (http://pu
Fle Edt View Reasoner Tools Refactor Window Ontop Help
@ cbio (rttppurt orglcbion 3) ~ Soarch
‘Active antology | Entitis x | Data properties x | individuals by class x | Ontop SPARQL X Ontop Mappings [snap sparal X
(G0 [Datasource maniager | Mapping manager | Mapping ASsistant - BETA |
pssertad + =L

> ® oviThing = Remove | 1) Copy (8 Select il [select none

SHLECT aiatinct 3.gens_synbol, g.enssrhl_gmna id EXOH xret_gene ansenbl s g WEERE g.epacicald = '9508"

diease_mutation

oncomsDM {id) a Discasciutation, terms:source {data source)ssdanul;

onCom:LOCATION - {id - pos}; AT i) tpepide . oncomeSEa AT (id)-{uniprotko._acY,

oncomSEQ jene_syimbol} i 0:00ID_{doid} ; g

momOC AN, CHROWOSONE. e emosome. post & P EFsctpostions ne. pos) ger;

<hitps/fidentiiers orgihgne symbal: {gene_symbol 1> .

SEESn s CASE chsencecre S0 INEN %) MmN WCIT_C2041 A 13 MmN NCITCIONS S 3 MmN NCITCIONS! 4 mE WoImcovo wm s mm

THCIZ C13921° MEN 6 THED 'NITC132220 VHEN 7' THEN NSIT C132230 WHEN '3’ WCITC13224" WHEN 150 HEN 'NCID 13235' WHEN '10' THEN 'NCIT C132051

B i TR NIT 13708 N 13 TN WSIT C3ao N 130 THEN IR G15300. AN 1140 TN NCTT CL33057 RN "13+ T eI 15210+

"16) THEN 'NCIT C15211' WHEN 17) HEN 'NCI 13313’ WHEI 16" THEN 'NCIP C13213' VHEN 115' THEN 'NCIZ C13214' KHEN '20' TAEN 'NCIT CI3216 UHEN '31°

T WCI_Ci2% W 270 T NGITCLoZlo W i TN NSIClagcs W Y. TGN T Claos D o chromacne i, snromaciepes, cispee

a8 pos wniprotkh, mitatian fres, CAS co WD e AN Deres //scqs.ceg' WD eosmiel T et sance sangen ac G/ coomic! WY (cc Tt

T s org! VRN elimvar. THEN

T ol ARG TS et Gele i oHe) Bienand G kg 7P il sc, gens symbol FROH dissasemtaticn oo dn

Soin mep, protein dieshoe mbacs “noeno]. traacxipt i ebi_tranacripe. 14 1act ot gene. mipror oF Mage

BliGO URDEOL KD, 4CaT U IDIOLKE ac
Data property hierarchy. Anmotation property hierarchy

sequence_alteration
oncomciSEQ ALT { 0b0:S0 000105 dy>
Object property h BEIETED oncome OCATIOR.PROT. {111 (pepide pos) -altercdFiom obo-(rer aa) , Sotrol 0 5103, chorirel A st {aKercdTo soo.{ah aat, slo-(al_aa 510}, bor (at_aa X

Pesaad < | QMEOMXLOCATION PROT_(id}-{peptde pos} fldoiExactposiion: fidorpastion (peptide pos i aiaditeger ncom<SEQ ALT-Ud)-{Uprdtkd ac) 3 0boiS0 /0001059

0nComx:LOCATION_PROT_{id }-{aa_pos uniproikbJ; :alteredFrom obo:{ref aa},
103 -obsitre CaeredTo obo: at ast s\c (al(a5 5101, bOLLalt 4) OnGomLOCATION PROT- {147-(aa pos ot} a (1 ec Fosition
R b] e 45-{gene symbal) o obo:50 0001059, feldoireference
ol)> comOCATION GENE (id}-{cds_pos} alteredFrom oboi{ref) ; alteredTo obo: at nt}

o ey Taene el faderEtacuPochlon Tadorpoation (205 baeTi adires

Object property hierarchy

> = ovitopObjectProperty

faldo: posit

SELECT 14, CASE ref_nt WHEN 'A' THEN 'HEDL 16700 WEN 'C' THEN 'CHEBL ic040' WEN 'O THEN 'GHEBI 162050 WiEN 7 "oHEBT_17521" wEm
TGHEBL 37566 EID A3 vofint, CAGE alt.nt WHEN ‘A THEN CHEBL 16708 WMEN 1C' TAEN HEBL 160400 VHEN 161 M (CHESI 163350 VHEN 70 PN -u—msx Eiratg—
S

. unipr a5 am soin v . cnsebl_transeript_id
i Snoent]t xanacriEt A 1oFE D01 XECE GeneNMIROL %5 Mg o MigH diETot KD s, iDRoE N e

s ol e e unibz

To s theressones ik Ramsone > Start ressoner (9] hon nfrencen

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (68/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions
Designing VKG mappings
A good design of mappings in VKGs is critical in ensuring that:

* the resulting VKG specification captures correctly the domain semantics, and
® queries posed over a VKG instance can be answered efficiently.

In designing the mapping assertions, we should take into account the following:

® For each atom in the target part, the source query should be the simplest SQL query that
retrieves the data that is necessary to populate that atom.

® |n particular, we should avoid unnecessary joins in the source query.

* We should combine two (or more) atoms in a single mapping assertion only if they require the
same source query.

* We need to pay attention to the form of the IRI-templates, to ensure that the “same” ontology
object retrieved through multiple mappings is constructed with the same IRI-template.

However, these observations in general are not sufficient to ensure a good mapping design. J

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (69/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Patterns in data sources

* |n order to simplify the task of mapping design, it is convenient to identify whether the data
source satisfies certain common patterns.

® Each such data pattern can be captured in a sort of “standard” way through a specific form of
mapping assertions, combined with some specific form of ontology axiom.

® The presence of a pattern in a data source, and hence the applicability of the corresponding
standard encoding into mappings (and ontology axioms), is signaled by the presence of some
(combination of) constraints holding over the relational tables.

* Notice that such constraints might hold:
® either because they are explicitly declared in the database, and hence enforced by the DBMS,
® or because they are implied by the semantics of the domain, even though they might not be declared
explicitly in the database.

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (70/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Looking at database design principles

In relational database design, well-established conceptual modeling principles and
methodologies are usually employed.
® The resulting schema should suitably reflects the application domain at hand.

* This design phase relies on semantically-rich representations such as ER diagrams.

® However, these representations, typically:
® get lost during deployment, since they are not conveyed together with the database itself, or
® quickly get outdated due to continuous adjustments triggered by changing requirements.

Key Observation

While the relational model may be semantically-poor with respect to ontological models, the original
semantically-rich design of the application domain leaves recognizable footprints that can be

converted into ontological mapping patterns.

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (71/110)

__ Motivationand VKG Solution VKGGComponents FormalSemantics and Query Answering DesigningaVkGSysem Condusions
Outline

@ Designing a VKG System

VKG Mapping Patterns

unibz

 Diego Calvanese (unibz + umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (71/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Elements characterizing a VKG mapping pattern

Therefore, in designing VKG mapping patterns, we draw an explicit and precise connection with
conceptual modeling practices found in DB design, while exploiting all of:

* the relational schema with its constraints
® the conceptual schema at the basis of the relational schema
® extensional data stored in the DB (when available)

® the domain knowledge that is encoded in ontology axioms

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (72/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Catalog of mapping patterns

To come up with a catalog of mapping patterns, we can rely on well-established methodologies and
patterns studied in:

® data management — e.g., W3C Direct Mapping Specification [Arenas et al. 2012] and extensions
® data analysis — e.g., algorithms for discovering dependencies, and
® conceptual modeling

The specification of each pattern includes:
¢ the three components of a VKG specification: DB schema, ontology, mapping between the two;
* the conceptual schema of the domain of interest;
® underlying data, when available.

Note that the patterns do not fix what is given as input and what is produced as output, but simply
describe how the different elements relate to each other.

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (73/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Two major groups of mapping patterns

Schema-driven patterns
Are shaped by the structure of the DB schema and its explicit constraints.

Data-driven patterns
® Consider also constraints emerging from specific configurations of the data in the DB.

® For each schema-driven pattern, we identify a data-driven version:
The constraints over the schema are not explicitly specified, but hold in the data.

* We provide also data-driven patterns that do not have a schema-driven counterpart.

Some patterns come with views over the DB-schema:
® Views reveal structures over the DB-schema, when the pattern is applied.
® Views can be used to identify the applicability of further patterns. -
unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (74/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Constraints on the data

When defining the mapping patterns, we consider the following types of constraints:

* Primary key constraint: denoted T(K, A), where K is a set of attributes that form the primary
key of relation T, and A are the remaining attributes of T.

¢ Key constraint: denoted unique,(K), where K is a set of attributes that form a key of the relation
T on which the attributes K are defined.

* Foreign key constraint: denoted 7 [A] C T»[K], where A is a set of attributes of relation 7, and
K is a key (typically, the primary key) of relation T,. For convenience, we represent the constraint
T\[A] € T,[K] by drawing an arrow from A in the schema of T to K in the schema of 75, i.e.,

T/ (AB) T (KA
L.

Note: We denote single attributes of a relational table using normal math font (e.g., A), while we use
boldface to indicate sets of attributes (e.g., A or K). J

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (75/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Types of mapping patterns

We have defined several types of mapping patterns. We discuss here some significant ones:

Entity (MpE) * Reified Relationship (MpRR)

Relationship (MpR) ® Hierarchy (MpH)

Relationship with Identifier Alignment (MpRa) ¢ Hierarchy with Identifier Alignment (MpHa)
Relationship with Merging (MpRm) ¢ Clustering Entity to Class (MpCE2C) /

1-1 Relationship with Merging (MpR11m) Data Property / Object Property

Entity with Weak Identification (MpEw)

We present each mapping pattern by specifying the following four components:
@ The constraints over the relational schema/data that make the patterns applicable.
® A possible conceptual schema (specified as an Entity-Relationship diagram) that corresponds to
such constraints.
The elements that are directly affected by the pattern and that give rise to the mapping assertions are outlined in red.
® The resulting mapping assertion(s) (given as source and target parts).
® The ontology axioms that should hold.

Note: In the following, we make use of IRI-templates of the form “:E/{K}”, where we assume that
“:E/” is a prefix that is specific for the instances of a class Cp. J

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (76/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System

Mapping pattern: Entity (MpE)

K A
Relational schema and constraints: %
T
Mapping assertion: Ontology axioms:
s: Tk dd,y C Cg
t: :E/{K} rdf:type Cg. dd, T u(r(A))
{tE/{K} dx {A} . }ackon Cg £ Jdy AcKUA

For each optional attribute A’, add an opi(A’) indication to the relational schema and drop the

corresponding axiom Cy C dd, from the ontology.

For the application of the mapping pattern, we observe the following:

® The pattern considers a single table 7 with primary key K and other relevant attributes A.

® The pattern captures how 7 is mapped into a corresponding class Cg.

® The primary key K of 7 is used to construct the objects that are instances of C, using a

template :E/{K} specific for Cp.
® Each relevant attribute of 7, is mapped to a data property of Cg.

Conclusions

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (771110)

Mapping pattern: Entity (MpE) — Example

Consider a TClient table containing ssns of clients, together with name, dateOfBirth, and hobbies as
additional attributes.
TClient (ssn,name,dateOfBirth,hobbies)

Mapping: TClient is mapped to a Client class using the attribute ssn to construct the IRIs for its
instances.

In addition, the ssn, name, and dateOfBirth attributes are used to populate in the object position the
three data properties ssn, name, and dob, respectively. The attribute hobbies is ignored.

mappingId MClient
source SELECT ssn, name, dateOfBirth FROM TClient
target :C/{ssn} rdf:type :Client ;

:ssn {ssn} ;

:name {name} ;

:dob {dateOfBirth} .

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (78/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions
Mapping pattern: Relationship (MpR) — Case of (0,n)—(0,n) cardinalities
K E A E K F AF

Relational schema and constraints:

Te(Kg, Ag) Tr(Kr, AF)
r —=
Tr(Kre, Kkr)
Mapping assertion: Ontology axioms:
s: Ty dpr C Cg
t: :E/{Kge} pr :F/{Kgr}. dpr C Cr

For the application of the mapping pattern, we observe the following:
® This pattern considers three tables 7%, 7, and 7.
® The primary key of 7% is partitioned into two parts Kz and Ky that are foreign keys to 7 and
Tr, respectively.
® 7% has no additional (relevant) attributes.
® The pattern captures how 7 is mapped to an object property pg, using the two parts Kz and —
Kxr of the primary key to construct respectively the subject and the object of the triples in pk. unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (79/110)

BHotvetonen VS0t N Gl ool - N oo e oo, ety e N 00 2|V 15210 o1 = 0
Mapping pattern: Relationship (MpR) — Example

An additional TAddress table in the client registry stores the addresses at which each client can be
reached, and such table has a foreign key to a table TLocation storing locations using attributes city
and street.
TClient (ssn,name,dateOfBirth,hobbies)
TLocation(city,street)
TAddress(client,locCity,locStreet)
FK: TAddress[client] -> Tclient[ssn]
FK: TAddress[locCity,locStreet] -> TLocation[city,street]

Mapping: The TAddress table is mapped to an address object property, for which the ontology
asserts that the domain is the class Client and the range an additional class Location, corresponding
to the TLocation table.

mappingId MAddress
source SELECT client, locCity, locStreet FROM TAddress
target :C/{client} :address :L/{locCity}/{locStreet}

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (80/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Relationship (MpR) — General case

Relational schema and constraints: KpAg Ky Ap
Te(Ke, Ag) Tr(Kr, Ar)

N

T
TR (KI\’[; > KI\’I")

Mapping assertion: Ontology axioms:
AN TR 3[)13 C CE
t: :E/{Kge} pr :F/{Kgr}. dpr ECF

® |n case of a (1, n) cardinality on role Rg, the inclusion dependency 7:[Kz| € Tx[Kzz] holds in the
relational schema, and we add to the ontology the inclusion axiom Cx C dpk.
Similarly for a cardinality (1, n) on role Rg.

® In case of a (-, 1) cardinality on role Rg, the primary key for 7 is restricted to the attributes Kx..
(Similarly for R and Kx.) In case both roles have a (_, 1) cardinality, either choice for the
primary key is made, and the remaining attributes form a non-primary key in the logical schema.

® In case of a (1, 1) cardinality on role R, both modifications above apply, and the inclusion
dependency Tx[Kg] € Tx[Kge] is actually a foreign key. (Similarly for role Ry.) unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (81/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Relationship with Identifier Alignment (MpRa)

Relational schema and constraints: KeAg KrUp
Te(Kg, Ag) Tr(Kr, Ur, Ar)
/I\
Tr(Kge, Kgrr) uniqueR, (Up)
Mapping assertion: Ontology axioms:
s Tk MKM:U/ Tr HPR CCg
t: :E/{Kge} pr :F/{Kg}. dpr ECr

For the application of the mapping pattern, we observe the following:

® Such pattern is a variation of pattern MpR, in which the foreign key in 7 does not point to the
primary key Ky of 7, but to an additional key U.

® Since the instances of class Cr corresponding to 7 are constructed using the primary key K of
T+ (cf. pattern MpE), also the pairs that populate pxr should refer in their object position to K.

* Note that K, can only be retrieved by a join between 7 and 7 on the additional key U.

Cardinality constraints are handled similarly to MpR, with the difference that now the constraints unibz
involve K. and U,. The case when both sets of attributes in 7 require alignment is treated similarly—

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (82/110)

Mot vetonen oAV Cs ol ot B Gl ool N o, 2 o oo, ety N 000 2|V 15210 o o1 = 0
Mapping pattern: Rel. with Identifier Alignment (MpRa) — Example

The primary key of the table TLocationCoord is now not given by the city and street, which are used
in the table TAddress that relates clients to their addresses, but is given by the latitude and longitude
of locations.
TClient (ssn,name,dateOfBirth,hobbies)
TLocationCoord(latitude,longitude,city,street) unique[TLocationCoord]: city,street
TAddress(client,locCity,locStreet)
FK: TAddress[client] -> Tclient[ssn]
FK: TAddress[locCity,locStreet] -> TLocationCoord[city,street]

Mapping: The TAddress table is mapped to an address object property, for which the ontology
asserts that the domain is the class Client and the range an additional class Location, corresponding
to the TLocationCoord table.

mappingId MAddressCoord

source SELECT client, latitude, longitude
FROM TAddress JOIN TLocationCoord ON locCity = city AND locStreet = street
target :C/{client} :address :LC/{latitude}/{longitude}

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (83/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Relationship with Merging (MpRm)

Relational schema and constraints: Keg Ag KrAF
Tr(Kr, Ar)

T
Te(Ke, Ker, Ag)

Mapping assertion: Ontology axioms:
s:Tg dper C Cg
t: :E/{Kg} per :F/{Kgr} . I E Cr

For the application of the mapping pattern, we observe the following:
® Such pattern is characterized by a table 7 in which the foreign key K. to a table 7 is disjoint
from its primary key K.
® The table 7 is mapped to an object property pzr, whose subject and object are derived
respectively from K, and K.

Cardinality constraints are handled similarly to MpR, with the catch that in the case of (0, 1) cardinality
on role Ry, we have that Kz is nullable.

The alignment variant MpRma, where the foreign key K- of 7 references a non-primary unibz
identifier of 7%, is defined in the straightforward way. -

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (84/110)

Mapping pattern: Relationship with Merging (MpRm) — Example

The relationship between a client and its unique billing address has been merged into the TClient
table. The ontology defines a billingAddress object property, whose domain is the Client class and
whose range is the Location class.

TLocation(city,street)
TClient(ssn,name,dateOfBirth,billCity,billStreet,hobbies)
FK: TClient[billCity,billStreet] -> TLocation[city,street]

Mapping: The billing address information is extracted by a mapping from the TClient table to
billingAddress.

mappingId MBillingAddress
source SELECT ssn, billCity, billStreet FROM TCLient
target :C/{ssn} :billingAddress :L/{billCity}/{billStreet} .

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (85/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System

Mapping pattern: 1-1 Relationship with Merging (MpR11m)

Conclusions

KEAE KFAF

Relational schema and constraints:

Te(Ke, Ag, Kr, Ar) uniquer, (Kr)
Ve(Kg, Ap) = ik, A (TE) Vi(Kr, Ap) = 7ik,.a,(TE)
T o +
Vr(Kg, KF) = 7k, k- (TE)
Mapping assertion: Ontology axioms:
S T[: HpR = CE adA c CF
t: :F/{Kr} rdf:type Cr. dd, T u(r(A))
{ :F/{Kr} ds {A} . }aek,uA, Apx =Cr Cr E dy AeKrUA»

:E/{Kg} pr :F/{Kg}.

For the application of the mapping pattern, we observe the following:
® The pattern could be applied when a table 7. has a primary key K, and an additional key K.
® Moreover, domain knowledge of the ontology indicates that objects with IRl :F/{K;} are relevant
in the domain, and that they have data properties that correspond to the attributes A, of 7.
* When this pattern is applied, the key K, and the attributes A, can be projected out from 7, unibz
resulting in a view V. to which further patterns can be applied, including MpR11m itself. -

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (86/110)

Botvetonen VS0l ot B Gl oo N o= 5o o=, ety N 000 2|V 15210 o o1 = 0
Mapping pattern: 1-1 Relationship with Merging (MpR11m) — Example

A single table TUniversity, containing the information about universities, contains also information
about their rector. The given ontology contains both a University and a Rector class.

TUniversity(uname,numfaculties,recssn,recname,recdob,salary)
unique [TUniversity]: recssn

Mapping: The attribute recssn in TUniversity, identifying the rector, is used to form the IRls for the
instances of Rector, and the attributes recname and recdob, intuitively belonging to the rector, are
mapped to data properties that have as domain Rector (as opposed to University).

mappingId MUniversity
source SELECT uname, numfaculties FROM TUniversity
target :U/{uname} rdf:type :University ; :numfac {numfaculties}

mappingId MRector

source SELECT recssn, recname, recdob FROM TUniversity
target :P/{recssn} rdf:type :Rector ;
:ssn {recssn} ; :name {recname} ; :dob {recdob?}

mappingId MhasRector
source SELECT uname, recssn FROM TUniversity um;;
target :U/{uname} :hasRector :P/{recssn} —

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (87/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: 1-1 Relationship with Merging (MpR11m) — Notes

* Notice that to apply pattern MpR11m, domain knowledge is inherently required to determine to
which class the attributes should be associated.

® For example, assume that the table TUniversity contains an attribute for the salary of the rector.
Then, we have two possibilities:
® the salary is considered a property of the rector, e.g., if the salary is negotiated individually by the
rector.
® the salary is considered a property of the university, e.g., if the salary of the rector is determined by
some regulation of the university.
Distinguishing which of these two possibilities is the correct one, requires in-depth knowledge
about the domain.

® The necessary domain knowledge may also come from the ontology, e.g., if the data properties
corresponding to the attributes are already present in the ontology, and their domain has been
declared.

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (88/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Entity with Weak |dentification (MpEw)

Relational schema and constraints:
Tr(Kr, Ar)

T
Te(Kg, Ker, Ag)

Mapping assertions: Ontology axioms:
AN TE HpR = CE HdA c CE
t: :E/{Kg}/{Kgr} rdf:type Cg. dd, T u(r(A))
{ :E/{Kg}/{Kgr} ds {A} . Jack,uA, dpr ECk Cp C ddy

AcKzUAL
(E/{Ke}/{Ker} pr :F/{Kgr} .

For the application of the mapping pattern, we observe the following:
® The data source contains a table 7 with primary key Kz, Kz and additional attributes Ar.

® Attributes Kz are a foreign key to an additional source table 7. They are not to be mapped to data properties (for class
CE), since they act as external identifier for table 7.

¢ The table 7 has a (primary) key K, and may also contain additional attributes A, (considered when applying MpE to it).
® The ontology contains an object property pr corresponding to a relationship that has been merged into 7, and classes
Cr and Cr corresponding to 7z and 7, respectively.
Cardinality constraints are handled similarly as for MpR. Optional attributes are handled similarly as for MpE. unib_z
The alignment variant MpWEa, where the foreign key references a non-primary identifier, is defined in the straightforward way.—

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (89/110)

Mapping pattern: Entity with Weak Identification (MpEw) — Example

We consider two tables Student and University, and we are given an ontology that contains classes
Student and University, connected through an object property enroliment.
TUniversity(uname,numfaculties)
TStudent (matrN,university,name)
FK: TStudent[university] -> TUniversity[uname]

Mapping: The attributes matrN and university in TStudent, identifying the student, are used to form
the IRls for the instances of Student. These are put into correspondence with the University through
the object property enroliment.

mappingId MStudent

source SELECT matrN, name FROM TStudent
target :S/{university}/{matrN} rdf:type :Student ;
:matrN {matrN} ; :name {namel} .

mappingId Menrollment
source SELECT matrN, university FROM TStudent
target :S/{university}/{matrN} :enrollment :U/{university} .

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (90/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Associating properties to a property

OWL 2 QL does not allow one to assign data properties to an object property.

Example

Consider again the actslIn object property that relates MovieActors to Movies.
We might want to model in the ontology:

¢ the role in which the actor played in the movie;
¢ the duration of the appearance;
® the payment received for playing in the movie;

These are neither properties of an actor nor properties of a movie, but are properties related to the
relationship between MovieActor and Movie.

We can take into account such situations by transforming an object property into a class, so that we
can then attach the properties to the class. —
This transformation is called reification, and follows a standard pattern. unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (91/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Reification of a property

Consider a property P with domain C; and range C,, and suppose we want to associate (object or
data) properties to P.

c1 P > c2
m2..n2 mi..n1

Reification of a property P with domain C; and range C;

© Introduce a new class Cp.

® Introduce two new object properties, P, connecting Cp to Cy, and P, connecting Cp to C>.
® Cp has a mandatory and functional participation both to P, and to Pc;.

@ The cardinalities on P become cardinalities on P, (i.e., on the inverse of Pc).

©® The cardinalities on P~ become cardinalities on P, (i.e., on the inverse of Pc,).

[L "
c1 < < Cr < > c2
1.1 m1..n1 m2..n2 1.1 _

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (92/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Reification of a property — Example

Consider the worksFor object property between the classes Employee and Project, expressing the
fact that an employee works for a project, where each employee can work for at most three projects,
and each project should have at least one employee working for it.

worksFor
Employee > Project
E 1.* 0..3 [j

Suppose that we want to model also the dates when the employee started and ended her work for the
project, and the number of person months she dedicated to that work. To do so, we need to reify the
worksFor data property.

We introduce a class Work, which is the reified counterpart of worksFor, and connect it to Employee
via a new object property workBy, and to Project via a new object property workFor.

Work
Employee |« workBy startDate: xsd:date workFor > Project
1..1 0..3 | endDate: xsd:date | {1 * 1.1 -
pm: xsd:integer unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (93/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Reified Relationship (MpRR) — Attribute case

Relational schema and constraints:

Te(Kg, Ag) Tr(Kr, Ar)
FS o EN
Tr(Kge, Kgr, Ar)
Mapping assertion: Ontology axioms:
st T dpre E Cr dprr C Cr
t: :R/{Kre}/{Kgr} rdf:type Cy. Hp[_QE CCg le_?F CCr
{ :R/{Kpe}/{Krr} da {A} . }acKurUKerUAR ddy C Cg
:R/{Kre}/{Krr} pre :E/{Kge}. { dd, € u(r(A)) }
:R/{Kge}/{Krr} prr :F/{Kgr} . Cr E Jdy Achg

For the application of the mapping pattern, we observe the following:
® The pattern applies to a table 7 whose primary key is partitioned in (at least) two parts K, and
Krr that are foreign keys to additional tables, and there are additional attributes Ay in 7.
® Since 7 corresponds to a conceptual element that has itself properties (corresponding to Az), to
represent it in the ontology we require a class Cy whose instances have an IRl :R/{Kr}/{Krr}.
e The mapping ensures that each component of the relationship is represented by an object ynibz
property (pre, prr), and that the tuples instantiating them can all be derived from 7 alone. -

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (94/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Reified Relationship (MpRR) — r-ary relationship case

Relational schema and constraints:

T6(Kg, Ac)
B
Te(Ke, Ap) Tr(Kge, Kgr, Krg, Ag) Tr(Kr, Ar)
T I x
Mapping assertion: Ky := Kgg U Kgr U Kgg Ontology axioms:
s:Tr dpre € Cr dprr C Cr dprc E Cr
t: :R/{Kr} rdf:type Cy. dppr E Ce dpyr E Cr dpre E Co
{ :R/{KR} dx {A} . Jaekzung Ad, C Cg
:R/{KRr} pre :E/{Kgel}. Ad, € u(r(A))
:R/{Kr} prr :F/{Kgr} . :R/{Kgr} prc :G/{Kgc}. Cg E Jdy Achy

For the application of the mapping pattern, we observe the following:
® The pattern applies to a table Ty whose primary key is partitioned in at least three parts Ky,
Krr, and Kyg, that are foreign keys to three additional tables.
® Additional attributes A might also be present in 7%.
® Apart from the arity of the relationship, the pattern behaves analogously to MpRR for the unibz
attribute case. -

Diego Calvanese (unibz + umu + ontopic) Cape-KR - 13/02/2025 (95/110)

Designing Virtual Knowledge Graphs

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Reified Relationship (MpRR) — Example

Consider a table TExam containing information about university exams, (which involve a student, a
course, and a professor teaching that course), that has foreign keys towards three tables, namely
TStudent, TCourse, and TProfessor.

TExam(student, course,professor,grade)

TStudent (ssn, sname) FK: TExam[student] -> TStudent[ssn]
TCourse(cid, cname, credits) FK: TExam[course] -> TCourse[cid]
TProfessor(ssn,pname, level) FK: TExam[professor] -> TProfessor[ssn]

Mapping: This information is represented by a relationship that is inherently ternary. The ontology
should contain a class Exam corresponding to the reified relationship, connected via three object
properties to the classes Student, Course, and Professor. The mapping ensures that the class Exam
is instantiated with objects whose IRI is constructed from the identifiers of the component classes.

mappingId MExam

source SELECT student, course, professor, grade FROM TExam

target :E/{student}/{course}/{professor} rdf:type :Exam ;
:examOf :P/{student} ;
:examFor :C/{course} ;
:examBy :P/{professor} ; =T
:examGrade {grade} “mE‘

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (96/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions
Mapping pattern: Hierarchy (MpH)
Relational schema and constraints: Kg
E
Te(Kg, Ar) - S AE
T
Tr(Kre, Ar) 7oA,
Mapping assertions: Ontology axioms:
s: Tk dd4 C Cr
t: :E/{Kpg} rdf:type Cp. CrE Cg ad, T u(r(A))
{ tE/{Kre} da {A} . Jaea, Cr £ Jda AcA,

Optional attributes are handled as for MpE.

For the application of the mapping pattern, we observe the following:
® The pattern considers a table 7 whose primary key is a foreign key to a table 7.
® Then, 7 is mapped to a class Cy in the ontology that is a sub-class of the class Cy to which 7

is mapped.
® Hence, Cr “inherits” the template :E/{-} of Cg, so that the instances of the two classes are unibz
“compatible”. —
Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (97/110)

Mapping pattern: Hierarchy (MpH) — Example

Consider a table TPerson containing information about persons, and a table TStudent containing
information about students, which has a foreign key towards TPerson.

TPerson(ssn,name, dob)

TStudent (ssn,sid,credits) FK: TStudent[ssn] -> TPerson[ssn]

Mapping: The two tables TPerson and TStudent are mapped to two classes Person and Student,
respectively, each with data properties corresponding to the attributes of the table. Moreover, the
ontology will contain an axiom stating that Student is a sub-class of Person.

mappingId MPerson
source SELECT ssn, name, dob FROM TPerson
target :P/{ssn} rdf:type :Person ;
:name {name} ;
:dateOfBirth {dob}

mappingId MStudent

source SELECT ssn, sid FROM TStudent

target :P/{ssn} rdf:type :Student ;
:studentId {sid} ; 1
:hasCredits {credits} umEz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (98/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Hierarchy with Identifier Alignment (MpHa)

Relational schema and constraints: Kg
E
T[{(&, A[._‘) UniqUeTl (UI-) AE

Tr(Kr, Ur, Ar)

Te(Kg, Ag) uniquey, (Kr) —O Ar
T
Vir(Kp,Ur, Ap) = Tr
Mapping assertions: Ontology axioms:
s: Tk dds C Cr
t: :E/{Ur} rdf:type Cr. Cr C Cg dd, T u(r(A))
{:E/{Ur} da {A} . lack,un, Cr T 3d Ak UA;

For the application of the mapping pattern, we observe the following:
® Such pattern is like MpH, but the foreign key in 7} is over a key U that is not primary.
® The objects for Cr have to be built out of Uy, rather than out of its primary key K.
® For this purpose, the pattern creates a view V- in which U is the primary key, and the foreignunib—z
key relations are preserved. -

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (99/110)

Mapping pattern: Hierarchy with Indentifier Alignment (MpHa) — Example

Consider the tables TPerson and TStudent of the previous example, but assume now that the primary

key of TStudent is sid. Consider also an additional table TEnrolled, recording course enroliments.
TPerson(ssn,name,dob)
TStudent(sid,ssn,credits) FK: TStudent[ssn] -> TPerson[ssn] key[TStudent]: ssn
TEnrolled(student, course) FK: TEnrolled[student] -> TStudent[sid]

Mapping: By applying pattern MpHa, we identify the instances of Student by their ssn, and we create
aview VStudent(sid,ssn,credits). Butnow, considering this view instead of TStudent, in order
to map TEnrolled into an object property enrolledin, we need to apply pattern MpRa rather than MpR.

mappingId MPerson

source SELECT ssn, name, dob FROM TPerson

target :P/{ssn} rdf:type :Person ; :name {name} ; :dateOfBirth {dob}
mappingId MStudent

source SELECT sid, ssn, credits FROM TStudent

target :P/{ssn} rdf:type :Student ; :studentId {sid} ; :hasCredits {credits}

mappingId MEnrolled
source SELECT ssn, course FROM TEnrolled JOIN TStudent ON student = sid um;;
target :P/{ssn} :enrolledIn :C/{course} —

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (100/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Mapping pattern: Clustering Entity to Class (MpCE2C) — Equality case

Relational schema and constraints: K A Attributes BC KU A
Te(K, A), S partition entity E into sub-entities Ey
Attributes B C KU A such that o € E, iff B(o) = v
partition table Ty into sub-tables 7%, Y

suchthatt € Ty, iff t((B] = v

{ Vi,(K,A) = 0Bv(TE) }veng(Ty)

Mapping assertions: Ontology axioms:
{s:opvTE { C} C Ck Wvers(rp)
t: :E/{K} rdf:type C} . lvers(ry)

For the application of the mapping pattern, we observe the following:

® This pattern is characterized by a table 7. corresponding to a class Cg, and a derivation rule
defining sub-classes of Cr according to the values for attributes B in 7.

* Accordingly, instances in 7 can be mapped to ontology objects in the sub-classes C}. of Cr. _
® As for other patterns, this pattern produces views according to the possible values v of B. unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (101/110)

Botvetonen VS0t N Gl oo - N oo e ooty o0 N 000 2|V L5210 o1 = 0
Mapping pattern: Clustering Entity to Class (MpCE2C) — Example

Consider a table TStudent containing students with an attribute degree defining whether they are
enrolled in a BSc or MSc study course and ranging over B’ or 'I".
TStudent (sid,name,dob,degree)

Mapping: The ontology defines a class Student with two subclasses BScStudent and MScStudent.
Pattern MpCE2C clusters the table according to the degree attribute, and instantiates the classes
BScStudent and MScStudent accordingly.

mappingId MStudent
source SELECT sid, name, dob FROM TStudent
target :S/{sid} rdf:type :Student ; :name {name} ; :dob {dateOfBirth} .

mappingId MBSc
source SELECT sid FROM TStudent WHERE degree = ’B’
target :S/{sid} rdf:type :BScStudent .

mappingId MMSc
source SELECT sid FROM TStudent WHERE degree = 'M’

target :S/{sid} rdf:type :MScStudent . unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (102/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Further mapping patterns

¢ Similarly to the previous pattern, which clusters instances of a class into different subclasses, we
can consider patterns that generate a cluster of data properties, or a cluster of object properties,
according to different criteria that can be applied to the source data.

® |n order to understand when such patterns can be applied, and then define the corresponding
mapping assertions and the expected underlying ontology axioms, we can proceed in a way
similar to the case of a cluster of (sub)classes.

* More in general, we might conceive also additional patterns that involve more complex
operations or queries over the data.

® Also, in any (sufficiently complex) real-world integration scenario, many cases will occur for
which none of the specified pattern applies.

® Therefore, based on (the knowledge that the designer has about) the domain semantics, and the
constructs that are available in the ontology, in general also ad-hoc mappings need to be defined.

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (103/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering

Additional considerations on IRI-templates

Designing a VKG System Conclusions

® As we have seen, it is a good practice to include in the IRI-template a prefix that depends on the
kind of object (i.e., the class).

® In the case of ISA hierarchies, one has to pay attention on whether to use the same or different
templates for the various classes in the hierarchy:

® Using the same template allows for specifying joins across the various classes of the hierarchy.
® Using different templates allows for differentiating the different classes and for applying stricter pruning
of queries, which helps in query optimization.

® One has also to consider whether to include info about the data source as part of the
IRI-template or not:

® |n general, this is not done, which makes the data sources transparent to the user who queries.
® By including the data source in the IRI-template, such information is recorded in the created objects.

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (104/110)

__ Motivationand VKG Solution VKGGComponents FormalSemantics and Query Answering DesigningaVkGSysem Condusions
Outline

@ Designing a VKG System

VKG Design Scenarios

unibz

 Diego Calvanese (unibz + umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (104/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Design scenarios for VKG mapping patterns

Depending on what information is available, we can consider different design scenarios where the
patterns can be applied:

@ Debugging of a VKG specification that is already in place.

® Conceptual schema reverse engineering for a DB that represents the domain of interest by
using a given full VKG specification.

©® Mapping bootstrapping for a given DB and ontology that miss the mappings relating them.

® Ontology + mapping bootstrapping from a given DB with constraints, and possibly a
conceptual schema.

® VKG bootstrapping, where the goal is to set up a full VKG specification from a conceptual
schema of the domain.

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (105/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Automating the mapping design process

® |In a complex real-world scenario, understanding the domain semantics, the semantics of the
data sources, and how the sources have to be related to the global schema/ontology can be
rather resource intensive and therefore costly.

® Currently, there are no tools that completely automate this process, and it is unlikely that a
completely automated solution is possible at all.

* However, there are tools that provide automated support for the (already difficult) task of
understanding which elements in one schema (e.g., a source) can correspond to which elements
of another schema (e.g., the global schema). This task is called schema matching.

® Based on a proposed match between elements, mapping patterns can provide valuable
indications on how to convert the match into an actual mapping, i.e., how to define the (SQL)
queries that correctly relate the semantics of the sources to that of the ontology.

* Also, mapping patterns can be automatically discovered, either by considering the constraints on
the data sources, or, more interestingly, derive the constraints from the actual data, even when
they are not defined over the sources at the schema level.

* Work in this direction is ongoing. unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (106/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

MPBoot mapping bootstrapper
We are currently developing the MPBoot mapping bootstrapper, that relies on mapping patterns:

e Current version supports the Direct Mapping W3C Specification

® Enriched with various configuration options:

¢ selection of elements (tables, attributes) to actually map
® renaming of elements

® treatment of null values in tables

® treatment of tables without primary keys

® Partial support for schema-driven mapping patterns:

® generation of domain and range assertions for properties (Schema Relationship Pattern)
® generation of class and property hierarchies (Schema Hierarchy Pattern)

e Extension to fully support schema driven patterns is ongoing.
® Extension to consider also data driven patterns is starting now [PhD of Marco Di Panfilo]. unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (107/110)

__ Motivationand VKG Solution VKGGComponents FormalSemantics and Query Answering DesigningaVKGSystem Condusions
Outline

@® Conclusions

unibz

_ Diego Calvanese (unibz +umu +ontopicy Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (107/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Summary

VKGs are by now a mature technology to address the challenges in data access and integration.
® They rely on W3C standards and on supporting APls and libraries.

® The technology is general purpose and applied in many different scenarios, but it can be tailored
towards specific domains by relying on standard ontologies.

® Performance and scalability w.r.t. larger datasets and larger and more complex ontologies, is still
a key challenge that is addressed by various kinds of optimizations in the query processing
engine.

® The design of VKG-based solutions, notably the mappings, is a major bottleneck that requires a
principled approach and supporting methodologies ~» Mapping patterns

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (108/110)

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

The Ontopic spinoff of unibz
ONTOI=IC
- —— S
https://ontopic.ai/
Funded in April 2019 as the first spin-off of the Free University of Bozen-Bolzano.

® Ontopic Studio
® Ensures scalability, reliability, and cost-efficiency at design and runtime of VKG solutions.
® Strong focus on usability

® Ontopic Server
® OBDA Server functionalities
¢ Deployment of SPARQL endpoints
¢ Deployment of JDBC functionality over VKG

® Technical services
® Technical support for Ontop and Ontopic Studio -
* Customized developments unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (109/110)

https://ontopic.ai/

Motivation and VKG Solution VKG Components Formal Semantics and Query Answering Designing a VKG System Conclusions

Ongoing and future work

® Accessing alternative types of data:
® temporal data [C., Okulmus, et al. 2023, AMW]
noSQL, tree, and graph structured data [Botoeva et al. 2019]
raster data and geo-spatial data [PhD by Arka Ghosh]
Web APIs [PhD by Albulen Pano]

Ongoing OnTeGra project with TU Vienna and Virtual Vehicle (Graz).

* Ontology-based federation, for accessing multiple, heterogeneous data sources [Gu et al. 2022,
IJCKG]

® Privacy issues [Cima et al. 2020; Bonatti et al. 2022], [PhD by Divya Baura]
® Ontology-based update [PhD by Romuald Wandiji]
® (Semi-)automatic extraction/learning of ontology axioms and mappings [C., Gal, et al. 2021, CAISE]

® For complex real-world scenarios, VKG-design requires also tool support.

See, e.g., O TOIIC Studio. unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (110/110)

References References

A great thank you to our collaborators

Elena Julien Linfang Zhenzhen Marco R'\ggﬂaﬂgz
Botoeva Corman Ding Gu Montali Mosca Mugr]o
Birkbeck FZ==u
Technion College :
Haifa London A '
Avigdor Roman Vladislav Michael
Gal Kontchakov Ryzhikov Zakharyaschev
U. Roma
Ontopic “La
s.r.l. Sapienza” Y-
Benjamin Sarah Giuseppe Domenico Maurizio Antonella Riccardo .
Cogrel Komla Ebri De Giacomo Lembo Lenzerini Poggi Rosati unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR - 13/02/2025 (111/110)

Thank you!

diego.calvanese@unibz.it
davide.lanti@unibz.it

Ontop website: https://ontop-vkg.org/

Github: https://github.com/ontop/ontop/
Facebook: https://www.facebook.com/obdaontop/
Twitter: @ontop4obda

Ontopic website: https://ontopic.ai/

https://ontop-vkg.org/
https://github.com/ontop/ontop/
https://www.facebook.com/obdaontop/
https://ontopic.ai/

o References ... PReerences
References |

[1] Guohui Xiao, Diego C., Roman Kontchakov, Domenico Lembo, Antonella Poggi,
Riccardo Rosati & Michael Zakharyaschev. “Ontology-Based Data Access: A Survey”. In: Proc.
of the 27th Int. Joint Conf. on Atrtificial Intelligence (IJCAI). IJCAI Org., 2018, pp. 5511-5519.
pol: 10.24963/ijcai.2018/777.

[2] Boris Motik, Bernardo Cuenca Grau, lan Horrocks, Zhe Wu, Achille Fokoue & Carsten Lutz.
OWL 2 Web Ontology Language Profiles (Second Edition). W3C Recommendation. Available
athttp://www.w3.org/TR/owl2-profiles/. World Wide Web Consortium, Dec. 2012.

[8] Franz Baader, Diego C., Deborah McGuinness, Daniele Nardi & Peter F. Patel-Schneider, eds.
The Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press, 2003.

[4] Maurizio Lenzerini & Paolo Nobili. “On the Satisfiability of Dependency Constraints in
Entity-Relationship Schemata”. In: Information Systems 15.4 (1990), pp. 453-461.

[5] Sonia Bergamaschi & Claudio Sartori. “On Taxonomic Reasoning in Conceptual Design”. In:
ACM Trans. on Database Systems 17.3 (1992), pp. 385—-422. —

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (113/110)

https://doi.org/10.24963/ijcai.2018/777
http://www.w3.org/TR/owl2-profiles/

o References ... PReerences
References Il

[6] Alexander Borgida. “Description Logics in Data Management”. In: [EEE Trans. on Knowledge
and Data Engineering 7.5 (1995), pp. 671-682.

[71 Diego C., Maurizio Lenzerini & Daniele Nardi. “Unifying Class-Based Representation
Formalisms”. In: J. of Artificial Intelligence Research 11 (1999), pp. 199—-240.

[8] Alexander Borgida & Ronald J. Brachman. “Conceptual Modeling with Description Logics”. In:
The Description Logic Handbook: Theory, Implementation and Applications. Ed. by
Franz Baader, Diego C., Deborah McGuinness, Daniele Nardi & Peter F. Patel-Schneider.
Cambridge University Press, 2003. Chap. 10, pp. 349-372.

[9] Daniela Berardi, Diego C. & Giuseppe De Giacomo. “Reasoning on UML Class Diagrams”. In:
Artificial Intelligence 168.1—-2 (2005), pp. 70—118.

[10] Anna Queralt, Alessandro Artale, Diego C. & Ernest Teniente. “OCL-Lite: Finite Reasoning on
UML/OCL Conceptual Schemas”. In: Data and Knowledge Engineering 73 (2012), pp. 1-22.

[11] Diego C., Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini & Riccardo Rosati.
“Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite _
Family”. In: J. of Automated Reasoning 39.3 (2007), pp. 385—429. unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (114/110)

o References ... PReerences
References lll

[12] Antonella Poggi, Domenico Lembo, Diego C., Giuseppe De Giacomo, Maurizio Lenzerini &
Riccardo Rosati. “Linking Data to Ontologies”. In: J. on Data Semantics 10 (2008),
pp. 133—-173. poi: 10.1007/978-3-540-77688-8_5.

[13] Diego C., Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide L., Martin Rezk,
Mariano Rodriguez-Muro & Guohui Xiao. “Ontop: Answering SPARQL Queries over Relational
Databases”. In: Semantic Web J. 8.3 (2017), pp. 471-487. poi: 10.3233/SW-160217.

[14] Nicola Guarino & Christopher A. Welty. “An Overview of OntoClean”. In: Handbook on
Ontologies. Ed. by Steffen Staab & Rudi Studer. International Handbooks on Information
Systems. Springer, 2009, pp. 201-220. poi: 10.1007/978-3-540-92673-3_9.

[15] Maurizio Lenzerini. “Data Integration: A Theoretical Perspective.”. In: Proc. of the 21st ACM
Symp. on Principles of Database Systems (PODS). 2002, pp. 233—246. por:
10.1145/543613.543644.

[16] Erhard Rahm & Philip A. Bernstein. “A Survey of Approaches to Automatic Schema Matching”.
In: Very Large Database J. 10.4 (2001), pp. 334—350.

[17] Jérbme Euzenat & Pavel Shvaiko. Ontology Matching. Springer, 2007. unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (115/110)

https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.3233/SW-160217
https://doi.org/10.1007/978-3-540-92673-3_9
https://doi.org/10.1145/543613.543644

O Refeences e References
References IV

[18] Dimitrios-Emmanuel Spanos, Periklis Stavrou & Nikolas Mitrou. “Bringing Relational Databases
into the Semantic Web: A Survey”. In: Semantic Web J. 3.2 (2012), pp. 169—-209.

[19] Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux & Juan Sequeda. A Direct Mapping
of Relational Data to RDF. \W3C Recommendation. Available at
http://www.w3.org/TR/rdb-direct-mapping/. World Wide Web Consortium, Sept. 2012.

[20] Diego C., Cem Okulmus, Magdalena Ortiz & Mantas Simkus. “On the Way to Temporal OBDA
Systems”. In: Proc. of the 15th Alberto Mendelzon Int. Workshop on Foundations of Data
Management (AMW). Vol. 3409. CEUR Workshop Proceedings. CEUR-WS.org, 2023.

[21] Elena Botoeva, Diego C., Benjamin Cogrel, Julien Corman & Guohui Xiao. “Ontology-based
Data Access — Beyond Relational Sources”. In: Intelligenza Artificiale 13.1 (2019), pp. 21-36.
pol: 10.3233/IA-190023.

[22] Zhenzhen Gu, Davide Lanti, Alessandro Mosca, Guohui Xiao, Jing Xiong & Diego C.
“Ontology-based Data Federation”. In: Proc. of the 11th Int. Joint Conf. on Knowledge Graphs

(IJCKG). ACM, 2022, pp. 10-19. poi: 16.1145/3579051.3579070. -
unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (116/110)

http://www.w3.org/TR/rdb-direct-mapping/
https://doi.org/10.3233/IA-190023
https://doi.org/10.1145/3579051.3579070

O Refeences e References
References V

[23] Gianluca Cima, Domenico Lembo, Lorenzo Marconi, Riccardo Rosati & Domenico Fabio Savo.
“Controlled Query Evaluation in Ontology-Based Data Access”. In: Proc. of the 19th Int.
Semantic Web Conf. (ISWC). Vol. 12506. Lecture Notes in Computer Science. Springer, 2020,
pp. 128—146. poi: 10.1007/978-3-030-62419-4_8.

[24] Piero A. Bonatti, Gianluca Cima, Domenico Lembo, Lorenzo Marconi, Riccardo Rosati,
Luigi Sauro & Domenico Fabio Savo. “Controlled Query Evaluation in OWL 2 QL: A “Longest
Honeymoon” Approach”. In: Proc. of the 21st Int. Semantic Web Conf. (ISWC). Vol. 13489.
Lecture Notes in Computer Science. Springer, 2022, pp. 428—444. po:
10.1007/978-3-031-19433-7_25.

[25] Diego C., Avigdor Gal, Naor Haba, Davide Lanti, Marco Montali, Alessandro Mosca &
Roee Shraga. “ADaMaP: Automatic Alignment of Relational Data Sources using Mapping
Patterns”. In: Proc. of the 33rd Int. Conf. on Advanced Information Systems Engineering
(CAISE). Vol. 12751. Lecture Notes in Computer Science. Springer, 2021, pp. 193—-209. po:
10.1007/978-3-030-79382-1_12.

unibz

Diego Calvanese (unibz + umu + ontopic) Designing Virtual Knowledge Graphs Cape-KR — 13/02/2025 (117/110)

https://doi.org/10.1007/978-3-030-62419-4_8
https://doi.org/10.1007/978-3-031-19433-7_25
https://doi.org/10.1007/978-3-030-79382-1_12

	Motivation and VKG Solution
	VKG Components
	Backbone: RDF
	Representing Ontologies in OWL2QL
	Query Language – SPARQL
	Mapping an Ontology to a Relational Database

	Formal Semantics and Query Answering
	Designing a VKG System
	Ontology and Mapping Design
	VKG Mapping Patterns
	VKG Design Scenarios

	Conclusions
	Appendix
	References
	

	References

	0.EndRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.EndLeft:
	anm0:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

