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What is the benefit?
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Motivation

Industrial impact

Within SIEMENS, constraint technologies have been successfully
used for solving configuration problems for more than 25 years.
[...] approximately 80 percent of the maintenance costs and more
than 60 percent of the development costs for the knowledge rep-
resentation and reasoning tasks were saved.

In: A. Falkner et al. Twenty-Five Years of Successful Application of Constraint Technologies at Siemens. AI Magazine.
37(4):67-80, 2016.
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Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving
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Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?
Debian, Ubuntu: Linux package configuration
Exeura: Call routing
FCC: Radio frequency auction
Gioia Tauro: Workforce management
NASA: Decision support for Space Shuttle
SBB: Train disposition
Siemens: Partner units configuration
Variantum: Product configuration
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What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

What are ASP’s distinguishing features?

High level, versatile modeling language
High performance solvers
Qualitative and quantitative optimization

Any industrial impact?

ASP Tech companies: DLV Systems and Potassco Solutions
Increasing interest in (large) companies
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Evolution

Some (biased) moments in time

’80 Capturing incomplete information

’90 Amalgamation and computation

’00 Applications and semantic rediscoveries

’10 Customization and integration
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Evolution

Some (biased) moments in time

’80 Capturing incomplete information

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics
ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries

’10 Customization and integration
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Growing dissemination — see last slides —
Constructive logics Equilibrium Logic
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Some (biased) moments in time
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’00 Applications and semantic rediscoveries
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Complex reasoning modes APIs, multi-shot solving
Hybridization Constraint ASP, theory solving
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Evolution

Some (biased) moments in time

’80 Capturing incomplete information

’90 Amalgamation and computation

’00 Applications and semantic rediscoveries

’10 Customization and integration

’20 Real-world industries

Industrial applications
Software engineering
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Foundation

Logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A rule is of the form

a0 :- a1, . . . , am, not am+1, . . . , not an.

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n
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A rule is of the form

a0 :- a1, . . . , am, not am+1, . . . , not an.

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Semantics given by stable models, informally,
models of P justifying each true atom by a proof

Minimal models in the logic HT (Heyting’30) / G3 (Gödel’32)
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Open and Closed world reasoning
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Open world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it is either true or false

is monotonic

Closed world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it becomes false

is non-monotonic

offers defaults, reachability, succinctness

ASP offers both open and closed world reasoning
by using stable model semantics
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Foundation

Open and Closed world reasoning
by example

Alphabet {a, b}

The rule

a

has the

models {a}, {a, b}
minimal models {a}
stable models {a}
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Foundation

Open and Closed world reasoning
by example

Alphabet {a, b}

The rule

¬b → a

has the

models {a}, {b}, {a, b}
minimal models {a}, {b}
stable models {a}

Torsten Schaub (KRR@UP) Knowledge-driven AI 14 / 45



Foundation

The logic of Here-and-There (HT)

Formula φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ

Interpretation A pair ⟨H,T ⟩ of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note ⟨H,T ⟩ is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms

atoms not in T are false

Idea

⟨H,T ⟩ |= φ ∼ φ is provably true
⟨T ,T ⟩ |= φ ∼ φ is possibly true (ie, classically true)
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Foundation

Satisfaction

⟨H,T ⟩ |= a if a ∈ H for any atom a

⟨H,T ⟩ |= φ ∧ ψ if ⟨H,T ⟩ |= φ and ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ ∨ ψ if ⟨H,T ⟩ |= φ or ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ→ ψ if ⟨X ,T ⟩ |= φ implies ⟨X ,T ⟩ |= ψ
for both X = H,T

Note ⟨H,T ⟩ |= ¬φ if ⟨T ,T ⟩ ̸|= φ since ¬φ = φ→ ⊥

An interpretation ⟨H,T ⟩ is a model of φ, if ⟨H,T ⟩ |= φ
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Foundation

Tautologies

H T a ¬a a ∨ ¬a ¬¬a ¬¬a ∨ ¬a a← ¬¬a
{a} {a} T F T T T T
∅ {a} F F F T T F
∅ ∅ F T T F T T
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Foundation

Equilibrium models
(Pearce’96)

A total interpretation ⟨T ,T ⟩ is an equilibrium model of
a formula φ, if

1 ⟨T ,T ⟩ |= φ
2 ⟨H,T ⟩ ̸|= φ for all H ⊂ T

T is called a stable model of φ

Note

⟨T ,T ⟩ acts as a classical model
⟨H,T ⟩ |= P iff H |= PT (PT is the reduct of P by T )
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Usage

Modeling, grounding, and solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving
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Usage

Language constructs

Facts q(42).

Rules p(X) :- q(X), not r(X).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C]

#minimize { C : q(X), p(X,C) }
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Usage

The traveling salesperson problem (TSP)

Problem Instance A set of cities and distances among them,
or simply a weighted graph

Problem Class What is the shortest possible route visiting
each city once and returning to the city of origin?

Note

TSP extends the Hamiltonian cycle problem:
Is there a cycle in a graph visiting each node exactly once

TSP is relevant to applications in logistics, planning, chip design,
and the core of the vehicle routing problem
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Usage

Traveling salesperson
Problem instance, cities.lp

start(a).

city(a). city(b). city(c). city(d).

road(a,b ,10). road(b,c ,20). road(c,d ,25). road(d,a ,40).

road(b,d ,30). road(d,c ,25). road(c,a ,35).
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Usage

Traveling salesperson
Problem encoding, tsp.lp

{ travel(X,Y) } :- road(X,Y,_).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.

:- city(X), 2 { travel(Y,X) }.
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Usage

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s
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Usage

Some of our industrial projects

Railway companies
Shift planning
Room planning

Maintenance scheduling
Train disposition

Automobile industries
Car assembly sequencing
Car version configuration

Robotic vehicle control

Logistics industries

Delivery optimization
Stock optimization

Manufacturing industries
Product configuration
Machine configuration

Assembly line layout

Public services

University timetabling
University study regulations
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Visualization

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Foundation

5 Usage

6 Visualization

7 Omissions

8 What else?

9 Recap
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Visualization

Modeling, grounding, and solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving
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Visualization

clingraph
Sudoku

ASP Developer
A problem

“A sudoku puzzle”

Model

Visualization encoding
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Visualization

clingraph
Sudoku

ASP Developer

initial(1,4,2). initial(3,3,1).

initial(3,4,3). initial(3,1,4).

Model

Visualization encoding
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Visualization

clingraph
Sudoku1

ASP Developer

initial(1,4,2). initial(3,3,1).

initial(3,4,3). initial(3,1,4).

sudoku(X,Y,V) :- initial(X,Y,V).

{ sudoku(X,Y,V) : val(V) } = 1 :- pos(X,Y).

:- sudoku(X,Y,V), sudoku(X’,Y,V), X != X’.

:- sudoku(X,Y,V), sudoku(X,Y’,V), Y != Y’.

:- sudoku(X,Y,V), sudoku(X’,Y’,V), (X,Y)!=(X’,Y’),

subgrid(X,Y,S), subgrid(X’,Y’,S).

Model

Visualization encoding

1Omitting pos/2, val/1, subgrid/3Torsten Schaub (KRR@UP) Knowledge-driven AI 29 / 45



Visualization

clingraph
Sudoku

ASP Developer

initial(1,4,2). initial(3,3,1).

initial(3,4,3). initial(3,1,4).

sudoku(X,Y,V) :- initial(X,Y,V).

{ sudoku(X,Y,V) : val(V) } = 1 :- pos(X,Y).

:- sudoku(X,Y,V), sudoku(X’,Y,V), X != X’.

:- sudoku(X,Y,V), sudoku(X,Y’,V), Y != Y’.

:- sudoku(X,Y,V), sudoku(X’,Y’,V), (X,Y)!=(X’,Y’),

subgrid(X,Y,S), subgrid(X’,Y’,S).

clingo version 5.7.1

Reading from sudoku.lp ..

Solving...

Answer: 1

sudoku(1,4,2) sudoku(3,3,1)

sudoku(1,2,3) sudoku(3,4,3)

sudoku(3,1,4) sudoku(1,1,1)

sudoku(4,2,1) sudoku(3,2,2)

sudoku(4,1,3) sudoku(1,3,4)

sudoku(4,3,2) sudoku(4,4,4)

sudoku(2,1,2) sudoku(2,4,1)

sudoku(2,3,3) sudoku(2,2,4)

SATISFIABLE

Models : 1+

Calls : 1

Time : 0.007s

CPU Time : 0.003s

Model

Visualization encoding
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Visualization

clingraph
Sudoku

ASP Developer

initial(1,4,2). initial(3,3,1).

initial(3,4,3). initial(3,1,4).

sudoku(X,Y,V) :- initial(X,Y,V).

{ sudoku(X,Y,V) : val(V) } = 1 :- pos(X,Y).

:- sudoku(X,Y,V), sudoku(X’,Y,V), X != X’.

:- sudoku(X,Y,V), sudoku(X,Y’,V), Y != Y’.

:- sudoku(X,Y,V), sudoku(X’,Y’,V), (X,Y)!=(X’,Y’),

subgrid(X,Y,S), subgrid(X’,Y’,S).

Image

Model

Visualization encoding
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Visualization

Visualization encoding
Sudoku

graph/1

node/2

edge/1

attr/4

graph(sudoku).

node(pos(X,Y), sudoku) :- pos(X,Y).

attr(node, pos(X,Y), label, V) :- sudoku(X,Y,V).

attr(node, pos(X,Y), shape, square) :- sudoku(X,Y,V).

attr(node, pos(X,Y), style, filled) :- sudoku(X,Y,V).

attr(node, pos(X,Y), fontsize, 30) :- sudoku(X,Y,V).

attr(node, pos(X,Y), width, "1") :- sudoku(X,Y,V).

attr(node, pos(X,Y), pos, @pos(X,Y)) :- pos(X,Y).

attr(node, pos(X,Y), fillcolor, blue) :- pos(X,Y), (((X-1)/dim)+((Y-1)/dim))\2==0.

attr(node, pos(X,Y), fontcolor, gray50) :- sudoku(X,Y,V), not initial(X,Y, ).
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Visualization

Example
Simple graph

#show node/1.

#show edge((N,M)) : edge(N, M).

#show attr(node, N, style, filled): node(N).

#show attr(node, N, color, C) : assign(N, C).
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Visualization

Example
Subgraphs
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Visualization

Example
UML
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Visualization

Example
SVG
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Visualization

Example
LATEX

Cyellow

Cyellow

Cgreen

Cred

start

▷

∼

⊗
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Visualization

Example
GIF animation
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Visualization

clingraph

An ASP-based front-end to graphviz

Define visualizations in terms of ASP
Visualize instances, solutions, or even the solving process
Extends ASP’s rapid prototyping with visualization

Functionalities

Command line usage
Python API
Different output formats
Integration with clingo

Open source software

https://github.com/potassco/clingraph

https://clingraph.readthedocs.io

Torsten Schaub (KRR@UP) Knowledge-driven AI 37 / 45
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Omissions

More features of interest

Meta programming

Qualitative and quantitative optimization

Heuristic programming

Application interface programming

Multi-shot solving
Theory solving

Linear Temporal, Dynamic and Metric reasoning

Visualization

Playful? https://potassco.org
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What else?

ASP systems and tools

gringo grounding

clasp solving

clingo ASP

metasp Meta ASP

clingcon ASP+CP

fclingo ASP+CP

clingo[dl] ASP+CP

clingo[lp] ASP+CP

clingo[lpx] ASP+CP

eclingo epistemic ASP

plingo probabilistic ASP

telingo temporal ASP

clinsight editing

xclingo explaining

clingo-server surfing

acclingo tuning

anthem verifying

asprin preferring

clingraph visualizing

clinguin interacting

viasp visualizing

clintest testing

clorm dataing

ngo optimizing
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What else?

Application-oriented systems

aspartame constraint solver

aspcafe vehicle equipment specification

aspcud software package configuration

asprilo warehouse simulation

chasp music composition

flatzingo constraint solver

fluto metabolic network expansion

plasp planning system

qasp quantified ASP solver

spa study planner

teaspoon university timetabling system

xorro sampling stable models
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Recap

Take home message
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Recap

Take home message

Modeling + Grounding + Solving

ASP = DB+LP+KR+SMTn

https://potassco.org

And it’s fun !
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Epilogue
After all, it’s all about Tweety!
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